A Bayesian Approach to Causal Discovery View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2006

AUTHORS

David Heckerman , Christopher Meek , Gregory Cooper

ABSTRACT

We examine the Bayesian approach to the discovery of causal DAG models and compare it to the constraint-based approach. Both approaches rely on the Causal Markov condition, but the two differ significantly in theory and practice. An important difference between the approaches is that the constraint-based approach uses categorical information about conditional-independence constraints in the domain, whereas the Bayesian approach weighs the degree to which such constraints hold. As a result, the Bayesian approach has three distinct advantages over its constraint-based counterpart. One, conclusions derived from the Bayesian approach are not susceptible to incorrect categorical decisions about independence facts that can occur with data sets of finite size. Two, using the Bayesian approach, finer distinctions among model structures—both quantitative and qualitative—can be made. Three, information from several models can be combined to make better inferences and to better account for modeling uncertainty. In addition to describing the general Bayesian approach to causal discovery, we review approximation methods for missing data and hidden variables, and illustrate differences between the Bayesian and constraint-based methods using artificial and real examples. More... »

PAGES

1-28

Book

TITLE

Innovations in Machine Learning

ISBN

3-540-30609-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-33486-6_1

DOI

http://dx.doi.org/10.1007/3-540-33486-6_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008717306


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Microsoft (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419815.0", 
          "name": [
            "Microsoft Research, Redmond, WA, 98052-6399"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heckerman", 
        "givenName": "David", 
        "id": "sg:person.01134362461.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134362461.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microsoft (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419815.0", 
          "name": [
            "Microsoft Research, Redmond, WA, 98052-6399"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meek", 
        "givenName": "Christopher", 
        "id": "sg:person.01352023432.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352023432.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pittsburgh", 
          "id": "https://www.grid.ac/institutes/grid.21925.3d", 
          "name": [
            "University of Pittsburgh, Pittsburgh, PA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cooper", 
        "givenName": "Gregory", 
        "id": "sg:person.0775714075.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775714075.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1214/aos/1176344064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008925299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0270-0255(86)90088-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012230731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-332-5.50035-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013517653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-2404-4_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013962799", 
          "https://doi.org/10.1007/978-1-4612-2404-4_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-2404-4_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013962799", 
          "https://doi.org/10.1007/978-1-4612-2404-4_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-5014-9_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033861074", 
          "https://doi.org/10.1007/978-94-011-5014-9_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-5014-9_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033861074", 
          "https://doi.org/10.1007/978-94-011-5014-9_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-203-8.50010-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034203065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035524560", 
          "https://doi.org/10.1007/bf00994016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-332-5.50006-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040034431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007469629108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044802083", 
          "https://doi.org/10.1023/a:1007469629108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176344136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044872629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/net.3230200507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045466199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046316965", 
          "https://doi.org/10.1007/bf00994110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-4832-1451-1.50036-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050218157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1997.10474045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03610929508831616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058336018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/224530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058544028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.1984.4767596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176350709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064409239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1403615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069473898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/271063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070072554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4135/9781412986311.n24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1087994723"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "We examine the Bayesian approach to the discovery of causal DAG models and compare it to the constraint-based approach. Both approaches rely on the Causal Markov condition, but the two differ significantly in theory and practice. An important difference between the approaches is that the constraint-based approach uses categorical information about conditional-independence constraints in the domain, whereas the Bayesian approach weighs the degree to which such constraints hold. As a result, the Bayesian approach has three distinct advantages over its constraint-based counterpart. One, conclusions derived from the Bayesian approach are not susceptible to incorrect categorical decisions about independence facts that can occur with data sets of finite size. Two, using the Bayesian approach, finer distinctions among model structures\u2014both quantitative and qualitative\u2014can be made. Three, information from several models can be combined to make better inferences and to better account for modeling uncertainty. In addition to describing the general Bayesian approach to causal discovery, we review approximation methods for missing data and hidden variables, and illustrate differences between the Bayesian and constraint-based methods using artificial and real examples.", 
    "editor": [
      {
        "familyName": "Holmes", 
        "givenName": "Dawn E.", 
        "type": "Person"
      }, 
      {
        "familyName": "Jain", 
        "givenName": "Lakhmi C.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-33486-6_1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "3-540-30609-9"
      ], 
      "name": "Innovations in Machine Learning", 
      "type": "Book"
    }, 
    "name": "A Bayesian Approach to Causal Discovery", 
    "pagination": "1-28", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-33486-6_1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "298824b34ffaa2f2ebaa0006656a8b49dd2b1a68872f1a7e0e5084730bb3f6f2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008717306"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin/Heidelberg", 
      "name": "Springer-Verlag", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-33486-6_1", 
      "https://app.dimensions.ai/details/publication/pub.1008717306"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000248.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-33486-6_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-33486-6_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-33486-6_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-33486-6_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-33486-6_1'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      23 PREDICATES      48 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-33486-6_1 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nf44def07d775431bb8eb38a89f7fb2d6
4 schema:citation sg:pub.10.1007/978-1-4612-2404-4_12
5 sg:pub.10.1007/978-94-011-5014-9_16
6 sg:pub.10.1007/bf00994016
7 sg:pub.10.1007/bf00994110
8 sg:pub.10.1023/a:1007469629108
9 https://doi.org/10.1002/net.3230200507
10 https://doi.org/10.1016/0270-0255(86)90088-6
11 https://doi.org/10.1016/b978-1-4832-1451-1.50036-6
12 https://doi.org/10.1016/b978-1-55860-203-8.50010-3
13 https://doi.org/10.1016/b978-1-55860-332-5.50006-7
14 https://doi.org/10.1016/b978-1-55860-332-5.50035-3
15 https://doi.org/10.1080/01621459.1997.10474045
16 https://doi.org/10.1080/03610929508831616
17 https://doi.org/10.1086/224530
18 https://doi.org/10.1109/tpami.1984.4767596
19 https://doi.org/10.1214/aos/1176344064
20 https://doi.org/10.1214/aos/1176344136
21 https://doi.org/10.1214/aos/1176350709
22 https://doi.org/10.2307/1403615
23 https://doi.org/10.2307/271063
24 https://doi.org/10.4135/9781412986311.n24
25 schema:datePublished 2006
26 schema:datePublishedReg 2006-01-01
27 schema:description We examine the Bayesian approach to the discovery of causal DAG models and compare it to the constraint-based approach. Both approaches rely on the Causal Markov condition, but the two differ significantly in theory and practice. An important difference between the approaches is that the constraint-based approach uses categorical information about conditional-independence constraints in the domain, whereas the Bayesian approach weighs the degree to which such constraints hold. As a result, the Bayesian approach has three distinct advantages over its constraint-based counterpart. One, conclusions derived from the Bayesian approach are not susceptible to incorrect categorical decisions about independence facts that can occur with data sets of finite size. Two, using the Bayesian approach, finer distinctions among model structures—both quantitative and qualitative—can be made. Three, information from several models can be combined to make better inferences and to better account for modeling uncertainty. In addition to describing the general Bayesian approach to causal discovery, we review approximation methods for missing data and hidden variables, and illustrate differences between the Bayesian and constraint-based methods using artificial and real examples.
28 schema:editor N112688a03e5b475882b9cc0ca1cee506
29 schema:genre chapter
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N96cff1176eb34d6d844f579df2d3b58f
33 schema:name A Bayesian Approach to Causal Discovery
34 schema:pagination 1-28
35 schema:productId N1e7d9a729c3e4facbb66847d878d0227
36 N336d51b95f59462981c9ee5bbeb30b19
37 Nd9eb689fbed9452c8ec2aed62b4cdac7
38 schema:publisher N408c4586bc154203b946e37dc9683304
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008717306
40 https://doi.org/10.1007/3-540-33486-6_1
41 schema:sdDatePublished 2019-04-16T00:46
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N9c2396d9cf4f4550b92a1e630278ecf0
44 schema:url http://link.springer.com/10.1007/3-540-33486-6_1
45 sgo:license sg:explorer/license/
46 sgo:sdDataset chapters
47 rdf:type schema:Chapter
48 N112688a03e5b475882b9cc0ca1cee506 rdf:first N4504fdc64e014ee3aa2fe431ef4b6b7e
49 rdf:rest N7eafabfb4694459eb5e54a867b6ded8f
50 N17f4a82d8586498ca571d19912cdf501 rdf:first sg:person.01352023432.48
51 rdf:rest N3744a10d45c14919b0333cc2d9f54a4e
52 N1e7d9a729c3e4facbb66847d878d0227 schema:name dimensions_id
53 schema:value pub.1008717306
54 rdf:type schema:PropertyValue
55 N336d51b95f59462981c9ee5bbeb30b19 schema:name doi
56 schema:value 10.1007/3-540-33486-6_1
57 rdf:type schema:PropertyValue
58 N3744a10d45c14919b0333cc2d9f54a4e rdf:first sg:person.0775714075.28
59 rdf:rest rdf:nil
60 N408c4586bc154203b946e37dc9683304 schema:location Berlin/Heidelberg
61 schema:name Springer-Verlag
62 rdf:type schema:Organisation
63 N4504fdc64e014ee3aa2fe431ef4b6b7e schema:familyName Holmes
64 schema:givenName Dawn E.
65 rdf:type schema:Person
66 N4dd22249828d40b3862bd8eafc625c73 schema:familyName Jain
67 schema:givenName Lakhmi C.
68 rdf:type schema:Person
69 N7eafabfb4694459eb5e54a867b6ded8f rdf:first N4dd22249828d40b3862bd8eafc625c73
70 rdf:rest rdf:nil
71 N96cff1176eb34d6d844f579df2d3b58f schema:isbn 3-540-30609-9
72 schema:name Innovations in Machine Learning
73 rdf:type schema:Book
74 N9c2396d9cf4f4550b92a1e630278ecf0 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 Nd9eb689fbed9452c8ec2aed62b4cdac7 schema:name readcube_id
77 schema:value 298824b34ffaa2f2ebaa0006656a8b49dd2b1a68872f1a7e0e5084730bb3f6f2
78 rdf:type schema:PropertyValue
79 Nf44def07d775431bb8eb38a89f7fb2d6 rdf:first sg:person.01134362461.98
80 rdf:rest N17f4a82d8586498ca571d19912cdf501
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
85 schema:name Statistics
86 rdf:type schema:DefinedTerm
87 sg:person.01134362461.98 schema:affiliation https://www.grid.ac/institutes/grid.419815.0
88 schema:familyName Heckerman
89 schema:givenName David
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134362461.98
91 rdf:type schema:Person
92 sg:person.01352023432.48 schema:affiliation https://www.grid.ac/institutes/grid.419815.0
93 schema:familyName Meek
94 schema:givenName Christopher
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352023432.48
96 rdf:type schema:Person
97 sg:person.0775714075.28 schema:affiliation https://www.grid.ac/institutes/grid.21925.3d
98 schema:familyName Cooper
99 schema:givenName Gregory
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775714075.28
101 rdf:type schema:Person
102 sg:pub.10.1007/978-1-4612-2404-4_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013962799
103 https://doi.org/10.1007/978-1-4612-2404-4_12
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/978-94-011-5014-9_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033861074
106 https://doi.org/10.1007/978-94-011-5014-9_16
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf00994016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035524560
109 https://doi.org/10.1007/bf00994016
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf00994110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046316965
112 https://doi.org/10.1007/bf00994110
113 rdf:type schema:CreativeWork
114 sg:pub.10.1023/a:1007469629108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044802083
115 https://doi.org/10.1023/a:1007469629108
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1002/net.3230200507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045466199
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0270-0255(86)90088-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012230731
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/b978-1-4832-1451-1.50036-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050218157
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/b978-1-55860-203-8.50010-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034203065
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/b978-1-55860-332-5.50006-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040034431
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/b978-1-55860-332-5.50035-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013517653
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1080/01621459.1997.10474045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305294
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1080/03610929508831616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058336018
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1086/224530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058544028
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/tpami.1984.4767596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742090
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1214/aos/1176344064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008925299
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1214/aos/1176344136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044872629
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1214/aos/1176350709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064409239
142 rdf:type schema:CreativeWork
143 https://doi.org/10.2307/1403615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069473898
144 rdf:type schema:CreativeWork
145 https://doi.org/10.2307/271063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070072554
146 rdf:type schema:CreativeWork
147 https://doi.org/10.4135/9781412986311.n24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087994723
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.21925.3d schema:alternateName University of Pittsburgh
150 schema:name University of Pittsburgh, Pittsburgh, PA
151 rdf:type schema:Organization
152 https://www.grid.ac/institutes/grid.419815.0 schema:alternateName Microsoft (United States)
153 schema:name Microsoft Research, Redmond, WA, 98052-6399
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...