2006-01-01
AUTHORSCatherine Dufour , Karine Dumesnil , Thierry Gourieux
ABSTRACTThe magnetic scattering of x-rays was first performed 30 years ago and was considered as a curiosity. However, due to the advent of high brilliance synchrotron radiation sources, this technique has become a standard microscopic probe for the investigation of magnetic properties. The magnetic x-ray scattering amplitude contains two terms: the nonresonant term that exists at all photon energies and the resonant term, induced by multipole electric transitions, that is peaked near absorption edges. In this paper, the basic concepts of x-ray magnetic scattering are first introduced for both non-resonant and resonant regimes. Then, selected examples are presented in order to illustrate several specific properties of the technique: i) high resolution in the reciprocal space; ii) ability to separate the orbital momentum contribution to magnetization; iii) chemical and electronic selectivity; iv) possibility to investigate weak moment systems and observe resonant signal for polarized non-magnetic ions; v) multi-q structure detection. More... »
PAGES243-273
Magnetism: A Synchrotron Radiation Approach
ISBN
978-3-540-33241-1
978-3-540-33242-8
http://scigraph.springernature.com/pub.10.1007/3-540-33242-1_9
DOIhttp://dx.doi.org/10.1007/3-540-33242-1_9
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1026480775
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Laboratoire Physique des Mat\u00e9riaux, Universit\u00e9 de Nancy 1, 239, 54506, Vandoeuvre l\u00e8s Nancy, France",
"id": "http://www.grid.ac/institutes/grid.29172.3f",
"name": [
"Laboratoire Physique des Mat\u00e9riaux, Universit\u00e9 de Nancy 1, 239, 54506, Vandoeuvre l\u00e8s Nancy, France"
],
"type": "Organization"
},
"familyName": "Dufour",
"givenName": "Catherine",
"id": "sg:person.012315027175.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012315027175.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire Physique des Mat\u00e9riaux, Universit\u00e9 de Nancy 1, 239, 54506, Vandoeuvre l\u00e8s Nancy, France",
"id": "http://www.grid.ac/institutes/grid.29172.3f",
"name": [
"Laboratoire Physique des Mat\u00e9riaux, Universit\u00e9 de Nancy 1, 239, 54506, Vandoeuvre l\u00e8s Nancy, France"
],
"type": "Organization"
},
"familyName": "Dumesnil",
"givenName": "Karine",
"id": "sg:person.011517446575.66",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517446575.66"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire Physique des Mat\u00e9riaux, Universit\u00e9 de Nancy 1, 239, 54506, Vandoeuvre l\u00e8s Nancy, France",
"id": "http://www.grid.ac/institutes/grid.29172.3f",
"name": [
"Laboratoire Physique des Mat\u00e9riaux, Universit\u00e9 de Nancy 1, 239, 54506, Vandoeuvre l\u00e8s Nancy, France"
],
"type": "Organization"
},
"familyName": "Gourieux",
"givenName": "Thierry",
"id": "sg:person.010635471143.87",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010635471143.87"
],
"type": "Person"
}
],
"datePublished": "2006-01-01",
"datePublishedReg": "2006-01-01",
"description": "The magnetic scattering of x-rays was first performed 30 years ago and was considered as a curiosity. However, due to the advent of high brilliance synchrotron radiation sources, this technique has become a standard microscopic probe for the investigation of magnetic properties. The magnetic x-ray scattering amplitude contains two terms: the nonresonant term that exists at all photon energies and the resonant term, induced by multipole electric transitions, that is peaked near absorption edges. In this paper, the basic concepts of x-ray magnetic scattering are first introduced for both non-resonant and resonant regimes. Then, selected examples are presented in order to illustrate several specific properties of the technique: i) high resolution in the reciprocal space; ii) ability to separate the orbital momentum contribution to magnetization; iii) chemical and electronic selectivity; iv) possibility to investigate weak moment systems and observe resonant signal for polarized non-magnetic ions; v) multi-q structure detection.",
"editor": [
{
"familyName": "Beaurepaire",
"givenName": "Eric",
"type": "Person"
},
{
"familyName": "Bulou",
"givenName": "Herv\u00e9",
"type": "Person"
},
{
"familyName": "Scheurer",
"givenName": "Fabrice",
"type": "Person"
},
{
"familyName": "Kappler",
"givenName": "Jean-Paul",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/3-540-33242-1_9",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-540-33241-1",
"978-3-540-33242-8"
],
"name": "Magnetism: A Synchrotron Radiation Approach",
"type": "Book"
},
"keywords": [
"magnetic scattering",
"high-brilliance synchrotron radiation sources",
"ray magnetic scattering",
"synchrotron radiation source",
"non-magnetic ions",
"magnetic x",
"photon energy",
"absorption edge",
"radiation source",
"resonant regime",
"microscopic probe",
"resonant signal",
"electric transitions",
"reciprocal space",
"electronic selectivity",
"nonresonant terms",
"momentum contributions",
"moment system",
"magnetic properties",
"resonant terms",
"ray diffraction",
"scattering",
"rays",
"high resolution",
"structure detection",
"basic concepts",
"specific properties",
"magnetization",
"diffraction",
"ions",
"energy",
"properties",
"terms",
"transition",
"regime",
"resolution",
"space",
"probe",
"amplitude",
"edge",
"technique",
"source",
"signals",
"system",
"possibility",
"order",
"contribution",
"detection",
"investigation",
"concept",
"example",
"advent",
"chemicals",
"selectivity",
"curiosity",
"paper",
"ability",
"years"
],
"name": "High Angle Magnetic X-ray Diffraction",
"pagination": "243-273",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1026480775"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/3-540-33242-1_9"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/3-540-33242-1_9",
"https://app.dimensions.ai/details/publication/pub.1026480775"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:42",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_175.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/3-540-33242-1_9"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-33242-1_9'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-33242-1_9'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-33242-1_9'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-33242-1_9'
This table displays all metadata directly associated to this object as RDF triples.
147 TRIPLES
23 PREDICATES
83 URIs
76 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/3-540-33242-1_9 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0299 |
3 | ″ | schema:author | Nea866b441c7846cea31ba7f868fdbfd7 |
4 | ″ | schema:datePublished | 2006-01-01 |
5 | ″ | schema:datePublishedReg | 2006-01-01 |
6 | ″ | schema:description | The magnetic scattering of x-rays was first performed 30 years ago and was considered as a curiosity. However, due to the advent of high brilliance synchrotron radiation sources, this technique has become a standard microscopic probe for the investigation of magnetic properties. The magnetic x-ray scattering amplitude contains two terms: the nonresonant term that exists at all photon energies and the resonant term, induced by multipole electric transitions, that is peaked near absorption edges. In this paper, the basic concepts of x-ray magnetic scattering are first introduced for both non-resonant and resonant regimes. Then, selected examples are presented in order to illustrate several specific properties of the technique: i) high resolution in the reciprocal space; ii) ability to separate the orbital momentum contribution to magnetization; iii) chemical and electronic selectivity; iv) possibility to investigate weak moment systems and observe resonant signal for polarized non-magnetic ions; v) multi-q structure detection. |
7 | ″ | schema:editor | N777281ee044e4dbfa0da539c751109e2 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N612250a27f9c48258aa5d57d1eec272a |
12 | ″ | schema:keywords | ability |
13 | ″ | ″ | absorption edge |
14 | ″ | ″ | advent |
15 | ″ | ″ | amplitude |
16 | ″ | ″ | basic concepts |
17 | ″ | ″ | chemicals |
18 | ″ | ″ | concept |
19 | ″ | ″ | contribution |
20 | ″ | ″ | curiosity |
21 | ″ | ″ | detection |
22 | ″ | ″ | diffraction |
23 | ″ | ″ | edge |
24 | ″ | ″ | electric transitions |
25 | ″ | ″ | electronic selectivity |
26 | ″ | ″ | energy |
27 | ″ | ″ | example |
28 | ″ | ″ | high resolution |
29 | ″ | ″ | high-brilliance synchrotron radiation sources |
30 | ″ | ″ | investigation |
31 | ″ | ″ | ions |
32 | ″ | ″ | magnetic properties |
33 | ″ | ″ | magnetic scattering |
34 | ″ | ″ | magnetic x |
35 | ″ | ″ | magnetization |
36 | ″ | ″ | microscopic probe |
37 | ″ | ″ | moment system |
38 | ″ | ″ | momentum contributions |
39 | ″ | ″ | non-magnetic ions |
40 | ″ | ″ | nonresonant terms |
41 | ″ | ″ | order |
42 | ″ | ″ | paper |
43 | ″ | ″ | photon energy |
44 | ″ | ″ | possibility |
45 | ″ | ″ | probe |
46 | ″ | ″ | properties |
47 | ″ | ″ | radiation source |
48 | ″ | ″ | ray diffraction |
49 | ″ | ″ | ray magnetic scattering |
50 | ″ | ″ | rays |
51 | ″ | ″ | reciprocal space |
52 | ″ | ″ | regime |
53 | ″ | ″ | resolution |
54 | ″ | ″ | resonant regime |
55 | ″ | ″ | resonant signal |
56 | ″ | ″ | resonant terms |
57 | ″ | ″ | scattering |
58 | ″ | ″ | selectivity |
59 | ″ | ″ | signals |
60 | ″ | ″ | source |
61 | ″ | ″ | space |
62 | ″ | ″ | specific properties |
63 | ″ | ″ | structure detection |
64 | ″ | ″ | synchrotron radiation source |
65 | ″ | ″ | system |
66 | ″ | ″ | technique |
67 | ″ | ″ | terms |
68 | ″ | ″ | transition |
69 | ″ | ″ | years |
70 | ″ | schema:name | High Angle Magnetic X-ray Diffraction |
71 | ″ | schema:pagination | 243-273 |
72 | ″ | schema:productId | N3353ca22425b46c595add3d8fd04a101 |
73 | ″ | ″ | N72137ec0294f4f159d4622749a19ad62 |
74 | ″ | schema:publisher | N6d418f0579c046548a35e8179b59881a |
75 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1026480775 |
76 | ″ | ″ | https://doi.org/10.1007/3-540-33242-1_9 |
77 | ″ | schema:sdDatePublished | 2022-05-20T07:42 |
78 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
79 | ″ | schema:sdPublisher | N65a40cecb4c148f29bc92fe10c08d82d |
80 | ″ | schema:url | https://doi.org/10.1007/3-540-33242-1_9 |
81 | ″ | sgo:license | sg:explorer/license/ |
82 | ″ | sgo:sdDataset | chapters |
83 | ″ | rdf:type | schema:Chapter |
84 | N0f15cb70c7774e7c94bd6548e28147b2 | schema:familyName | Beaurepaire |
85 | ″ | schema:givenName | Eric |
86 | ″ | rdf:type | schema:Person |
87 | N3353ca22425b46c595add3d8fd04a101 | schema:name | dimensions_id |
88 | ″ | schema:value | pub.1026480775 |
89 | ″ | rdf:type | schema:PropertyValue |
90 | N578bd0d2c7c240bab71cf6d3e1ee841f | schema:familyName | Kappler |
91 | ″ | schema:givenName | Jean-Paul |
92 | ″ | rdf:type | schema:Person |
93 | N5d1cbd7ee16143cf8e4bba418fee0c22 | schema:familyName | Scheurer |
94 | ″ | schema:givenName | Fabrice |
95 | ″ | rdf:type | schema:Person |
96 | N5db8d768f7d846db88f076bbe5c622c3 | rdf:first | N578bd0d2c7c240bab71cf6d3e1ee841f |
97 | ″ | rdf:rest | rdf:nil |
98 | N612250a27f9c48258aa5d57d1eec272a | schema:isbn | 978-3-540-33241-1 |
99 | ″ | ″ | 978-3-540-33242-8 |
100 | ″ | schema:name | Magnetism: A Synchrotron Radiation Approach |
101 | ″ | rdf:type | schema:Book |
102 | N65a40cecb4c148f29bc92fe10c08d82d | schema:name | Springer Nature - SN SciGraph project |
103 | ″ | rdf:type | schema:Organization |
104 | N6d418f0579c046548a35e8179b59881a | schema:name | Springer Nature |
105 | ″ | rdf:type | schema:Organisation |
106 | N71bff23f0efc4ef996bd92dc2b8fa7d1 | rdf:first | N8a533de8d52b40d7a43f5aed381ebad9 |
107 | ″ | rdf:rest | Nb8339639a4284b3993904bae7af45f5a |
108 | N72137ec0294f4f159d4622749a19ad62 | schema:name | doi |
109 | ″ | schema:value | 10.1007/3-540-33242-1_9 |
110 | ″ | rdf:type | schema:PropertyValue |
111 | N777281ee044e4dbfa0da539c751109e2 | rdf:first | N0f15cb70c7774e7c94bd6548e28147b2 |
112 | ″ | rdf:rest | N71bff23f0efc4ef996bd92dc2b8fa7d1 |
113 | N7d48b8f056634dbf92671ec6c0042bad | rdf:first | sg:person.011517446575.66 |
114 | ″ | rdf:rest | Nea495780231c400f9be0c750d4e432fd |
115 | N8a533de8d52b40d7a43f5aed381ebad9 | schema:familyName | Bulou |
116 | ″ | schema:givenName | Hervé |
117 | ″ | rdf:type | schema:Person |
118 | Nb8339639a4284b3993904bae7af45f5a | rdf:first | N5d1cbd7ee16143cf8e4bba418fee0c22 |
119 | ″ | rdf:rest | N5db8d768f7d846db88f076bbe5c622c3 |
120 | Nea495780231c400f9be0c750d4e432fd | rdf:first | sg:person.010635471143.87 |
121 | ″ | rdf:rest | rdf:nil |
122 | Nea866b441c7846cea31ba7f868fdbfd7 | rdf:first | sg:person.012315027175.43 |
123 | ″ | rdf:rest | N7d48b8f056634dbf92671ec6c0042bad |
124 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
125 | ″ | schema:name | Physical Sciences |
126 | ″ | rdf:type | schema:DefinedTerm |
127 | anzsrc-for:0299 | schema:inDefinedTermSet | anzsrc-for: |
128 | ″ | schema:name | Other Physical Sciences |
129 | ″ | rdf:type | schema:DefinedTerm |
130 | sg:person.010635471143.87 | schema:affiliation | grid-institutes:grid.29172.3f |
131 | ″ | schema:familyName | Gourieux |
132 | ″ | schema:givenName | Thierry |
133 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010635471143.87 |
134 | ″ | rdf:type | schema:Person |
135 | sg:person.011517446575.66 | schema:affiliation | grid-institutes:grid.29172.3f |
136 | ″ | schema:familyName | Dumesnil |
137 | ″ | schema:givenName | Karine |
138 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517446575.66 |
139 | ″ | rdf:type | schema:Person |
140 | sg:person.012315027175.43 | schema:affiliation | grid-institutes:grid.29172.3f |
141 | ″ | schema:familyName | Dufour |
142 | ″ | schema:givenName | Catherine |
143 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012315027175.43 |
144 | ″ | rdf:type | schema:Person |
145 | grid-institutes:grid.29172.3f | schema:alternateName | Laboratoire Physique des Matériaux, Université de Nancy 1, 239, 54506, Vandoeuvre lès Nancy, France |
146 | ″ | schema:name | Laboratoire Physique des Matériaux, Université de Nancy 1, 239, 54506, Vandoeuvre lès Nancy, France |
147 | ″ | rdf:type | schema:Organization |