1-Lipschitz Aggregation Operators, Quasi-Copulas and Copulas with Given Opposite Diagonal View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005-01-01

AUTHORS

Erich Peter Klement , Anna Kolesárová

ABSTRACT

Copulas with given diagonal have been studied in [4, 10]. In [2, 5, 11] smallest and greatest (quasi-)copulas with given diagonal are constructed. Both (two-dimensional) copulas and quasi-copulas are special cases of binary 1-Lipschitz aggregation operators [3, 8], and in [7] 1-Lipschitz aggregation operators with given diagonal (and the consequences for (quasi-)copulas) are investigated. We give constructions for smallest and greatest 1-Lipschitz aggregation operators with given opposite diagonal, allowing us to obtain most results for (quasi-)copulas with given opposite diagonal as special cases. More... »

PAGES

565-571

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-31182-3_52

DOI

http://dx.doi.org/10.1007/3-540-31182-3_52

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020088766


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Knowledge-Based Mathematical Systems, Johannes Kepler University, Linz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.9970.7", 
          "name": [
            "Department of Knowledge-Based Mathematical Systems, Johannes Kepler University, Linz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klement", 
        "givenName": "Erich Peter", 
        "id": "sg:person.010620407107.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620407107.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia", 
          "id": "http://www.grid.ac/institutes/grid.440789.6", 
          "name": [
            "Department of Mathematics, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koles\u00e1rov\u00e1", 
        "givenName": "Anna", 
        "id": "sg:person.013323425473.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013323425473.28"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005-01-01", 
    "datePublishedReg": "2005-01-01", 
    "description": "Copulas with given diagonal have been studied in [4, 10]. In [2, 5, 11] smallest and greatest (quasi-)copulas with given diagonal are constructed. Both (two-dimensional) copulas and quasi-copulas are special cases of binary 1-Lipschitz aggregation operators [3, 8], and in [7] 1-Lipschitz aggregation operators with given diagonal (and the consequences for (quasi-)copulas) are investigated. We give constructions for smallest and greatest 1-Lipschitz aggregation operators with given opposite diagonal, allowing us to obtain most results for (quasi-)copulas with given opposite diagonal as special cases.", 
    "editor": [
      {
        "familyName": "Reusch", 
        "givenName": "Bernd", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-31182-3_52", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-22807-3", 
        "978-3-540-31182-9"
      ], 
      "name": "Computational Intelligence, Theory and Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "aggregation operators", 
      "quasi-copulas", 
      "special case", 
      "operators", 
      "copula", 
      "most results", 
      "construction", 
      "cases", 
      "results", 
      "opposite"
    ], 
    "name": "1-Lipschitz Aggregation Operators, Quasi-Copulas and Copulas with Given Opposite Diagonal", 
    "pagination": "565-571", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020088766"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-31182-3_52"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-31182-3_52", 
      "https://app.dimensions.ai/details/publication/pub.1020088766"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_298.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-31182-3_52"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-31182-3_52'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-31182-3_52'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-31182-3_52'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-31182-3_52'


 

This table displays all metadata directly associated to this object as RDF triples.

80 TRIPLES      23 PREDICATES      35 URIs      28 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-31182-3_52 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N635212529d2b48c8b6e812d28ecb82ae
4 schema:datePublished 2005-01-01
5 schema:datePublishedReg 2005-01-01
6 schema:description Copulas with given diagonal have been studied in [4, 10]. In [2, 5, 11] smallest and greatest (quasi-)copulas with given diagonal are constructed. Both (two-dimensional) copulas and quasi-copulas are special cases of binary 1-Lipschitz aggregation operators [3, 8], and in [7] 1-Lipschitz aggregation operators with given diagonal (and the consequences for (quasi-)copulas) are investigated. We give constructions for smallest and greatest 1-Lipschitz aggregation operators with given opposite diagonal, allowing us to obtain most results for (quasi-)copulas with given opposite diagonal as special cases.
7 schema:editor N4a80a511899649969e2f377339df1253
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Na37e47bfb8db471e89abfce4de18e2f7
12 schema:keywords aggregation operators
13 cases
14 construction
15 copula
16 most results
17 operators
18 opposite
19 quasi-copulas
20 results
21 special case
22 schema:name 1-Lipschitz Aggregation Operators, Quasi-Copulas and Copulas with Given Opposite Diagonal
23 schema:pagination 565-571
24 schema:productId N5f28952d92b948e09f5587912efa0eb2
25 Nede0dd43034245668ef4a8ddc003094b
26 schema:publisher Nb3247e373d6f4bba844b43274e30b969
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020088766
28 https://doi.org/10.1007/3-540-31182-3_52
29 schema:sdDatePublished 2022-01-01T19:16
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Nd37085484253424faddb490d151b29dd
32 schema:url https://doi.org/10.1007/3-540-31182-3_52
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N4a80a511899649969e2f377339df1253 rdf:first Nbd340cc00a6f470f893160babf7396fc
37 rdf:rest rdf:nil
38 N5f28952d92b948e09f5587912efa0eb2 schema:name doi
39 schema:value 10.1007/3-540-31182-3_52
40 rdf:type schema:PropertyValue
41 N635212529d2b48c8b6e812d28ecb82ae rdf:first sg:person.010620407107.52
42 rdf:rest N7b0a19d0e03e4bf38bd194f7f6e1940d
43 N7b0a19d0e03e4bf38bd194f7f6e1940d rdf:first sg:person.013323425473.28
44 rdf:rest rdf:nil
45 Na37e47bfb8db471e89abfce4de18e2f7 schema:isbn 978-3-540-22807-3
46 978-3-540-31182-9
47 schema:name Computational Intelligence, Theory and Applications
48 rdf:type schema:Book
49 Nb3247e373d6f4bba844b43274e30b969 schema:name Springer Nature
50 rdf:type schema:Organisation
51 Nbd340cc00a6f470f893160babf7396fc schema:familyName Reusch
52 schema:givenName Bernd
53 rdf:type schema:Person
54 Nd37085484253424faddb490d151b29dd schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Nede0dd43034245668ef4a8ddc003094b schema:name dimensions_id
57 schema:value pub.1020088766
58 rdf:type schema:PropertyValue
59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
60 schema:name Mathematical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
63 schema:name Pure Mathematics
64 rdf:type schema:DefinedTerm
65 sg:person.010620407107.52 schema:affiliation grid-institutes:grid.9970.7
66 schema:familyName Klement
67 schema:givenName Erich Peter
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620407107.52
69 rdf:type schema:Person
70 sg:person.013323425473.28 schema:affiliation grid-institutes:grid.440789.6
71 schema:familyName Kolesárová
72 schema:givenName Anna
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013323425473.28
74 rdf:type schema:Person
75 grid-institutes:grid.440789.6 schema:alternateName Department of Mathematics, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
76 schema:name Department of Mathematics, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
77 rdf:type schema:Organization
78 grid-institutes:grid.9970.7 schema:alternateName Department of Knowledge-Based Mathematical Systems, Johannes Kepler University, Linz, Austria
79 schema:name Department of Knowledge-Based Mathematical Systems, Johannes Kepler University, Linz, Austria
80 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...