Revealed stochastic preference: a synthesis View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2006

AUTHORS

Daniel L. McFadden

ABSTRACT

The problem of revealed stochastic preference is whether probability distributions of observed choices in a population for various choice situations are consistent with a hypothesis of maximization of preference preorders by members of the population. This is a population analog of the classical revealed preference problem in economic consumer theory. This paper synthesizes the solutions to this problem that have been obtained by Marcel K. Richter and the author, and by J. C. Falmagne, in the case of finite sets of alternatives, and utilizes unpublished research of Richter and the author to give results for the non-finite choice sets encountered in economic consumer theory. More... »

PAGES

1-20

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-29578-x_1

DOI

http://dx.doi.org/10.1007/3-540-29578-x_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046774133


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Economics, University of California, 94720-3880, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Economics, University of California, 94720-3880, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McFadden", 
        "givenName": "Daniel L.", 
        "id": "sg:person.013765257404.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013765257404.41"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "The problem of revealed stochastic preference is whether probability distributions of observed choices in a population for various choice situations are consistent with a hypothesis of maximization of preference preorders by members of the population. This is a population analog of the classical revealed preference problem in economic consumer theory. This paper synthesizes the solutions to this problem that have been obtained by Marcel K. Richter and the author, and by J. C. Falmagne, in the case of finite sets of alternatives, and utilizes unpublished research of Richter and the author to give results for the non-finite choice sets encountered in economic consumer theory.", 
    "editor": [
      {
        "familyName": "Aliprantis", 
        "givenName": "Charalambos D.", 
        "type": "Person"
      }, 
      {
        "familyName": "Matzkin", 
        "givenName": "Rosa L.", 
        "type": "Person"
      }, 
      {
        "familyName": "McFadden", 
        "givenName": "Daniel L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Moore", 
        "givenName": "James C.", 
        "type": "Person"
      }, 
      {
        "familyName": "Yannelis", 
        "givenName": "Nicholas C.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-29578-x_1", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "3-540-29577-1"
      ], 
      "name": "Rationality and Equilibrium", 
      "type": "Book"
    }, 
    "keywords": [
      "stochastic preferences", 
      "consumer theory", 
      "choice sets", 
      "choice situation", 
      "population analogue", 
      "preference problem", 
      "preferences", 
      "finite set", 
      "probability distribution", 
      "maximization", 
      "unpublished research", 
      "choice", 
      "theory", 
      "problem", 
      "authors", 
      "set", 
      "Falmagne", 
      "hypothesis", 
      "situation", 
      "alternative", 
      "preorder", 
      "solution", 
      "research", 
      "Richter", 
      "population", 
      "distribution", 
      "members", 
      "results", 
      "cases", 
      "analogues", 
      "synthesis", 
      "paper", 
      "hypothesis of maximization", 
      "preference preorders", 
      "economic consumer theory", 
      "Marcel K. Richter", 
      "K. Richter", 
      "non-finite choice sets"
    ], 
    "name": "Revealed stochastic preference: a synthesis", 
    "pagination": "1-20", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046774133"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-29578-x_1"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-29578-x_1", 
      "https://app.dimensions.ai/details/publication/pub.1046774133"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T19:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_173.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-29578-x_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-29578-x_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-29578-x_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-29578-x_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-29578-x_1'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      23 PREDICATES      66 URIs      57 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-29578-x_1 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 anzsrc-for:14
4 anzsrc-for:1402
5 schema:author N5186f67b6c4d4c3082a032272d0c12fb
6 schema:datePublished 2006
7 schema:datePublishedReg 2006-01-01
8 schema:description The problem of revealed stochastic preference is whether probability distributions of observed choices in a population for various choice situations are consistent with a hypothesis of maximization of preference preorders by members of the population. This is a population analog of the classical revealed preference problem in economic consumer theory. This paper synthesizes the solutions to this problem that have been obtained by Marcel K. Richter and the author, and by J. C. Falmagne, in the case of finite sets of alternatives, and utilizes unpublished research of Richter and the author to give results for the non-finite choice sets encountered in economic consumer theory.
9 schema:editor Ndaab6a326bbc4274bf348e55d7a8bc54
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N7f275d2073484b46b53535dcb408e832
14 schema:keywords Falmagne
15 K. Richter
16 Marcel K. Richter
17 Richter
18 alternative
19 analogues
20 authors
21 cases
22 choice
23 choice sets
24 choice situation
25 consumer theory
26 distribution
27 economic consumer theory
28 finite set
29 hypothesis
30 hypothesis of maximization
31 maximization
32 members
33 non-finite choice sets
34 paper
35 population
36 population analogue
37 preference preorders
38 preference problem
39 preferences
40 preorder
41 probability distribution
42 problem
43 research
44 results
45 set
46 situation
47 solution
48 stochastic preferences
49 synthesis
50 theory
51 unpublished research
52 schema:name Revealed stochastic preference: a synthesis
53 schema:pagination 1-20
54 schema:productId Nb08384cf8a1141a6bd3c977203a9e655
55 Ne8dedb2b7448498d81d673011be4b078
56 schema:publisher N10bd99d17bb5431b96174001f8b38e24
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046774133
58 https://doi.org/10.1007/3-540-29578-x_1
59 schema:sdDatePublished 2021-12-01T19:58
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N3667e6d2e60b4bbf935a3dc11604cce4
62 schema:url https://doi.org/10.1007/3-540-29578-x_1
63 sgo:license sg:explorer/license/
64 sgo:sdDataset chapters
65 rdf:type schema:Chapter
66 N10bd99d17bb5431b96174001f8b38e24 schema:name Springer Nature
67 rdf:type schema:Organisation
68 N214fb3d7bea44a6984384352ec6afeca schema:familyName Matzkin
69 schema:givenName Rosa L.
70 rdf:type schema:Person
71 N3667e6d2e60b4bbf935a3dc11604cce4 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N39b5dd0e2718410d880d79d69f17f961 rdf:first Nb147f9f7e5574cbc82490680153e3cc2
74 rdf:rest Nedb0b378e8b545278a4d84715acbd02f
75 N5186f67b6c4d4c3082a032272d0c12fb rdf:first sg:person.013765257404.41
76 rdf:rest rdf:nil
77 N53b3165be2d3436391f924666d368a29 schema:familyName Aliprantis
78 schema:givenName Charalambos D.
79 rdf:type schema:Person
80 N7f275d2073484b46b53535dcb408e832 schema:isbn 3-540-29577-1
81 schema:name Rationality and Equilibrium
82 rdf:type schema:Book
83 N838813e9cadb4745a6778d669f741e74 schema:familyName Yannelis
84 schema:givenName Nicholas C.
85 rdf:type schema:Person
86 Na116fa5f30f84d6cbef09d95c04f3886 rdf:first N214fb3d7bea44a6984384352ec6afeca
87 rdf:rest Ndd289c3fee644d3b99472a6b73b84623
88 Nb08384cf8a1141a6bd3c977203a9e655 schema:name doi
89 schema:value 10.1007/3-540-29578-x_1
90 rdf:type schema:PropertyValue
91 Nb147f9f7e5574cbc82490680153e3cc2 schema:familyName Moore
92 schema:givenName James C.
93 rdf:type schema:Person
94 Ndaab6a326bbc4274bf348e55d7a8bc54 rdf:first N53b3165be2d3436391f924666d368a29
95 rdf:rest Na116fa5f30f84d6cbef09d95c04f3886
96 Ndd289c3fee644d3b99472a6b73b84623 rdf:first Nde4984a99ce14426aaa29aeb4841c72e
97 rdf:rest N39b5dd0e2718410d880d79d69f17f961
98 Nde4984a99ce14426aaa29aeb4841c72e schema:familyName McFadden
99 schema:givenName Daniel L.
100 rdf:type schema:Person
101 Ne8dedb2b7448498d81d673011be4b078 schema:name dimensions_id
102 schema:value pub.1046774133
103 rdf:type schema:PropertyValue
104 Nedb0b378e8b545278a4d84715acbd02f rdf:first N838813e9cadb4745a6778d669f741e74
105 rdf:rest rdf:nil
106 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
107 schema:name Mathematical Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
110 schema:name Statistics
111 rdf:type schema:DefinedTerm
112 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
113 schema:name Economics
114 rdf:type schema:DefinedTerm
115 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
116 schema:name Applied Economics
117 rdf:type schema:DefinedTerm
118 sg:person.013765257404.41 schema:affiliation grid-institutes:grid.47840.3f
119 schema:familyName McFadden
120 schema:givenName Daniel L.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013765257404.41
122 rdf:type schema:Person
123 grid-institutes:grid.47840.3f schema:alternateName Department of Economics, University of California, 94720-3880, Berkeley, CA, USA
124 schema:name Department of Economics, University of California, 94720-3880, Berkeley, CA, USA
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...