Applications of Gröbner bases in non-linear computational geometry View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1988

AUTHORS

Bruno Buchberger

ABSTRACT

Gröbner bases are certain finite sets of multivariate polynomials. Many problems in polynomial ideal theory (algebraic geometry, non-linear computational geometry) can be solved by easy algorithms after transforming the polynomial sets involved in the specification of the problems into Gröbner basis form. In this paper we give some examples of applying the Gröbner bases method to problems in non-linear computational geometry (inverse kinematics in robot programming, collision detection for superellipsoids, implicitization of parametric representations of curves and surfaces, inversion problem for parametric representations, automated geometrical theorem proving, primary decomposition of implicitly defined geometrical objects). The paper starts with a brief summary of the Gröbner bases method. More... »

PAGES

52-80

Book

TITLE

Trends in Computer Algebra

ISBN

978-3-540-18928-2
978-3-540-38850-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-18928-9_5

DOI

http://dx.doi.org/10.1007/3-540-18928-9_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019833071


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Buchberger", 
        "givenName": "Bruno", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-314x(78)90019-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005436926"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988", 
    "datePublishedReg": "1988-01-01", 
    "description": "Gr\u00f6bner bases are certain finite sets of multivariate polynomials. Many problems in polynomial ideal theory (algebraic geometry, non-linear computational geometry) can be solved by easy algorithms after transforming the polynomial sets involved in the specification of the problems into Gr\u00f6bner basis form. In this paper we give some examples of applying the Gr\u00f6bner bases method to problems in non-linear computational geometry (inverse kinematics in robot programming, collision detection for superellipsoids, implicitization of parametric representations of curves and surfaces, inversion problem for parametric representations, automated geometrical theorem proving, primary decomposition of implicitly defined geometrical objects). The paper starts with a brief summary of the Gr\u00f6bner bases method.", 
    "editor": [
      {
        "familyName": "Jan\u00dfen", 
        "givenName": "Rainer", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-18928-9_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-18928-2", 
        "978-3-540-38850-0"
      ], 
      "name": "Trends in Computer Algebra", 
      "type": "Book"
    }, 
    "name": "Applications of Gr\u00f6bner bases in non-linear computational geometry", 
    "pagination": "52-80", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-18928-9_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5e7f135fa2d6724d1204df3064c71789287c0f286e54ea6d54d7631c6e60bb60"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019833071"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-18928-9_5", 
      "https://app.dimensions.ai/details/publication/pub.1019833071"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T11:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000255.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-18928-9_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-18928-9_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-18928-9_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-18928-9_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-18928-9_5'


 

This table displays all metadata directly associated to this object as RDF triples.

63 TRIPLES      23 PREDICATES      28 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-18928-9_5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nbf5b7de42e884280965abe51e02a63c3
4 schema:citation https://doi.org/10.1016/0022-314x(78)90019-7
5 schema:datePublished 1988
6 schema:datePublishedReg 1988-01-01
7 schema:description Gröbner bases are certain finite sets of multivariate polynomials. Many problems in polynomial ideal theory (algebraic geometry, non-linear computational geometry) can be solved by easy algorithms after transforming the polynomial sets involved in the specification of the problems into Gröbner basis form. In this paper we give some examples of applying the Gröbner bases method to problems in non-linear computational geometry (inverse kinematics in robot programming, collision detection for superellipsoids, implicitization of parametric representations of curves and surfaces, inversion problem for parametric representations, automated geometrical theorem proving, primary decomposition of implicitly defined geometrical objects). The paper starts with a brief summary of the Gröbner bases method.
8 schema:editor N9764f9e8c8964541884583679b7036a8
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Nf3caa2bd784c476dbde04ee2ea072176
13 schema:name Applications of Gröbner bases in non-linear computational geometry
14 schema:pagination 52-80
15 schema:productId N790e1c5dce6943298665700eaa86c6b9
16 N7a7fc5dafdc340be980001215b6580aa
17 N80a6cd14eca04d8babcb08f60434c991
18 schema:publisher N3e0e55baef3d4c649859be47b44aed54
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019833071
20 https://doi.org/10.1007/3-540-18928-9_5
21 schema:sdDatePublished 2019-04-15T11:34
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N152ee610bd1f44878fbe82ffbc3a2d6c
24 schema:url http://link.springer.com/10.1007/3-540-18928-9_5
25 sgo:license sg:explorer/license/
26 sgo:sdDataset chapters
27 rdf:type schema:Chapter
28 N152ee610bd1f44878fbe82ffbc3a2d6c schema:name Springer Nature - SN SciGraph project
29 rdf:type schema:Organization
30 N3e0e55baef3d4c649859be47b44aed54 schema:location Berlin, Heidelberg
31 schema:name Springer Berlin Heidelberg
32 rdf:type schema:Organisation
33 N5a8157e519a4414ebafa85e4570a32f2 schema:familyName Buchberger
34 schema:givenName Bruno
35 rdf:type schema:Person
36 N790e1c5dce6943298665700eaa86c6b9 schema:name doi
37 schema:value 10.1007/3-540-18928-9_5
38 rdf:type schema:PropertyValue
39 N7a7fc5dafdc340be980001215b6580aa schema:name dimensions_id
40 schema:value pub.1019833071
41 rdf:type schema:PropertyValue
42 N80a6cd14eca04d8babcb08f60434c991 schema:name readcube_id
43 schema:value 5e7f135fa2d6724d1204df3064c71789287c0f286e54ea6d54d7631c6e60bb60
44 rdf:type schema:PropertyValue
45 N9764f9e8c8964541884583679b7036a8 rdf:first Ndac8cc7fdb844e46990d070ddbee984a
46 rdf:rest rdf:nil
47 Nbf5b7de42e884280965abe51e02a63c3 rdf:first N5a8157e519a4414ebafa85e4570a32f2
48 rdf:rest rdf:nil
49 Ndac8cc7fdb844e46990d070ddbee984a schema:familyName Janßen
50 schema:givenName Rainer
51 rdf:type schema:Person
52 Nf3caa2bd784c476dbde04ee2ea072176 schema:isbn 978-3-540-18928-2
53 978-3-540-38850-0
54 schema:name Trends in Computer Algebra
55 rdf:type schema:Book
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
60 schema:name Pure Mathematics
61 rdf:type schema:DefinedTerm
62 https://doi.org/10.1016/0022-314x(78)90019-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005436926
63 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...