Ohmic and nonlinear transport of (TaSe4)2I under pressure View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1985

AUTHORS

L. Forró , H. Mutka , S. Bouffard , J. Morillo , A. Jánossy

ABSTRACT

We present the effect of hydrostatic pressure on the resistivity of (TaSe4)2I in both ohmic and nonlinear regimes. The phase transition temperature of 262 K at ambiant pressure initially increases at the rute of 1 K/kbar, has a maximum and above 12 kbars it starts to decrease. The semiconducting energy gap in the Peierls state decreases by 50 K/kbar, i.e. 1.7%/kbar. The effect of pressure on the threshold field is also drastic. At 190 K it decreases from 2.0 V/cm at ambiant pressure to 0.8 V/cm at 12 kbars, but it continous to show the exponential temperature dependence. For the explanation of these data we propose a model whereby the temperature dependence of the threshold field depends on the normal carrier density. More... »

PAGES

361-365

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-13913-3_235

DOI

http://dx.doi.org/10.1007/3-540-13913-3_235

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025531792


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cenfar, S.E.S.I., B.P. N26, 92260, Fontenay Aux Roses, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Cenfar, S.E.S.I., B.P. N26, 92260, Fontenay Aux Roses, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Forr\u00f3", 
        "givenName": "L.", 
        "id": "sg:person.01273427767.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273427767.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cenfar, S.E.S.I., B.P. N26, 92260, Fontenay Aux Roses, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Cenfar, S.E.S.I., B.P. N26, 92260, Fontenay Aux Roses, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mutka", 
        "givenName": "H.", 
        "id": "sg:person.0731605044.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731605044.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cenfar, S.E.S.I., B.P. N26, 92260, Fontenay Aux Roses, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Cenfar, S.E.S.I., B.P. N26, 92260, Fontenay Aux Roses, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bouffard", 
        "givenName": "S.", 
        "id": "sg:person.012720412635.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012720412635.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cenfar, S.E.S.I., B.P. N26, 92260, Fontenay Aux Roses, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Cenfar, S.E.S.I., B.P. N26, 92260, Fontenay Aux Roses, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morillo", 
        "givenName": "J.", 
        "id": "sg:person.011512230353.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011512230353.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central Research Institute for Physics, P.O.B. 49, H-1525, Budapest, Hungary", 
          "id": "http://www.grid.ac/institutes/grid.419766.b", 
          "name": [
            "Central Research Institute for Physics, P.O.B. 49, H-1525, Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "J\u00e1nossy", 
        "givenName": "A.", 
        "id": "sg:person.0620351217.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620351217.56"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1985", 
    "datePublishedReg": "1985-01-01", 
    "description": "We present the effect of hydrostatic pressure on the resistivity of (TaSe4)2I in both ohmic and nonlinear regimes. The phase transition temperature of 262 K at ambiant pressure initially increases at the rute of 1 K/kbar, has a maximum and above 12 kbars it starts to decrease. The semiconducting energy gap in the Peierls state decreases by 50 K/kbar, i.e. 1.7%/kbar. The effect of pressure on the threshold field is also drastic. At 190 K it decreases from 2.0 V/cm at ambiant pressure to 0.8 V/cm at 12 kbars, but it continous to show the exponential temperature dependence. For the explanation of these data we propose a model whereby the temperature dependence of the threshold field depends on the normal carrier density.", 
    "editor": [
      {
        "familyName": "Hutiray", 
        "givenName": "Gyula", 
        "type": "Person"
      }, 
      {
        "familyName": "S\u00f3lyom", 
        "givenName": "Jen\u00f6", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-13913-3_235", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-13913-3", 
        "978-3-540-39137-1"
      ], 
      "name": "Charge Density Waves in Solids", 
      "type": "Book"
    }, 
    "keywords": [
      "threshold field", 
      "semiconducting energy gap", 
      "temperature dependence", 
      "nonlinear transport", 
      "carrier density", 
      "energy gap", 
      "exponential temperature dependence", 
      "nonlinear regime", 
      "state decreases", 
      "ambiant pressure", 
      "phase transition temperature", 
      "transition temperature", 
      "effect of pressure", 
      "dependence", 
      "hydrostatic pressure", 
      "field", 
      "kbar", 
      "resistivity", 
      "regime", 
      "density", 
      "gap", 
      "temperature", 
      "pressure", 
      "transport", 
      "RUTE", 
      "effect", 
      "explanation", 
      "model", 
      "decrease", 
      "data"
    ], 
    "name": "Ohmic and nonlinear transport of (TaSe4)2I under pressure", 
    "pagination": "361-365", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025531792"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-13913-3_235"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-13913-3_235", 
      "https://app.dimensions.ai/details/publication/pub.1025531792"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_371.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-13913-3_235"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-13913-3_235'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-13913-3_235'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-13913-3_235'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-13913-3_235'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      22 PREDICATES      55 URIs      48 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-13913-3_235 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N79f5d183430848d58478d099c9de9fd2
4 schema:datePublished 1985
5 schema:datePublishedReg 1985-01-01
6 schema:description We present the effect of hydrostatic pressure on the resistivity of (TaSe4)2I in both ohmic and nonlinear regimes. The phase transition temperature of 262 K at ambiant pressure initially increases at the rute of 1 K/kbar, has a maximum and above 12 kbars it starts to decrease. The semiconducting energy gap in the Peierls state decreases by 50 K/kbar, i.e. 1.7%/kbar. The effect of pressure on the threshold field is also drastic. At 190 K it decreases from 2.0 V/cm at ambiant pressure to 0.8 V/cm at 12 kbars, but it continous to show the exponential temperature dependence. For the explanation of these data we propose a model whereby the temperature dependence of the threshold field depends on the normal carrier density.
7 schema:editor N22606ee08b694b85a5d3bf56c18ff077
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Ne27f6ff4de144e058ebbc2d2bfdbe16a
11 schema:keywords RUTE
12 ambiant pressure
13 carrier density
14 data
15 decrease
16 density
17 dependence
18 effect
19 effect of pressure
20 energy gap
21 explanation
22 exponential temperature dependence
23 field
24 gap
25 hydrostatic pressure
26 kbar
27 model
28 nonlinear regime
29 nonlinear transport
30 phase transition temperature
31 pressure
32 regime
33 resistivity
34 semiconducting energy gap
35 state decreases
36 temperature
37 temperature dependence
38 threshold field
39 transition temperature
40 transport
41 schema:name Ohmic and nonlinear transport of (TaSe4)2I under pressure
42 schema:pagination 361-365
43 schema:productId N2ec495baf8ca4401a589d1ec5344070a
44 N3cb5b71278d849b8bd368b169d1a3383
45 schema:publisher N191ed625bcc34d90834eb7adcaaf310a
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025531792
47 https://doi.org/10.1007/3-540-13913-3_235
48 schema:sdDatePublished 2022-12-01T06:52
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nca8dcde184254cd0a32af2939873afa5
51 schema:url https://doi.org/10.1007/3-540-13913-3_235
52 sgo:license sg:explorer/license/
53 sgo:sdDataset chapters
54 rdf:type schema:Chapter
55 N191ed625bcc34d90834eb7adcaaf310a schema:name Springer Nature
56 rdf:type schema:Organisation
57 N22606ee08b694b85a5d3bf56c18ff077 rdf:first Nf765b3605b9b435f812c4639682a3dca
58 rdf:rest N8a4619bf37964fc2aa4bfc0a6f16f451
59 N2ec495baf8ca4401a589d1ec5344070a schema:name doi
60 schema:value 10.1007/3-540-13913-3_235
61 rdf:type schema:PropertyValue
62 N300bb1bf54af46529aa6d6e85ab6a84e rdf:first sg:person.011512230353.02
63 rdf:rest N6572455f20f349f898891b5fc3daa6b7
64 N3cb5b71278d849b8bd368b169d1a3383 schema:name dimensions_id
65 schema:value pub.1025531792
66 rdf:type schema:PropertyValue
67 N477248b399a34b34b46b66bc8854aa59 rdf:first sg:person.012720412635.62
68 rdf:rest N300bb1bf54af46529aa6d6e85ab6a84e
69 N4d98c86204394f958fcf04e0262251eb rdf:first sg:person.0731605044.52
70 rdf:rest N477248b399a34b34b46b66bc8854aa59
71 N6572455f20f349f898891b5fc3daa6b7 rdf:first sg:person.0620351217.56
72 rdf:rest rdf:nil
73 N79f5d183430848d58478d099c9de9fd2 rdf:first sg:person.01273427767.72
74 rdf:rest N4d98c86204394f958fcf04e0262251eb
75 N8a4619bf37964fc2aa4bfc0a6f16f451 rdf:first Ncf3dd0517ce94b45a231cce877363ea1
76 rdf:rest rdf:nil
77 Nca8dcde184254cd0a32af2939873afa5 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Ncf3dd0517ce94b45a231cce877363ea1 schema:familyName Sólyom
80 schema:givenName Jenö
81 rdf:type schema:Person
82 Ne27f6ff4de144e058ebbc2d2bfdbe16a schema:isbn 978-3-540-13913-3
83 978-3-540-39137-1
84 schema:name Charge Density Waves in Solids
85 rdf:type schema:Book
86 Nf765b3605b9b435f812c4639682a3dca schema:familyName Hutiray
87 schema:givenName Gyula
88 rdf:type schema:Person
89 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
90 schema:name Engineering
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
93 schema:name Materials Engineering
94 rdf:type schema:DefinedTerm
95 sg:person.011512230353.02 schema:affiliation grid-institutes:None
96 schema:familyName Morillo
97 schema:givenName J.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011512230353.02
99 rdf:type schema:Person
100 sg:person.012720412635.62 schema:affiliation grid-institutes:None
101 schema:familyName Bouffard
102 schema:givenName S.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012720412635.62
104 rdf:type schema:Person
105 sg:person.01273427767.72 schema:affiliation grid-institutes:None
106 schema:familyName Forró
107 schema:givenName L.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273427767.72
109 rdf:type schema:Person
110 sg:person.0620351217.56 schema:affiliation grid-institutes:grid.419766.b
111 schema:familyName Jánossy
112 schema:givenName A.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620351217.56
114 rdf:type schema:Person
115 sg:person.0731605044.52 schema:affiliation grid-institutes:None
116 schema:familyName Mutka
117 schema:givenName H.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731605044.52
119 rdf:type schema:Person
120 grid-institutes:None schema:alternateName Cenfar, S.E.S.I., B.P. N26, 92260, Fontenay Aux Roses, France
121 schema:name Cenfar, S.E.S.I., B.P. N26, 92260, Fontenay Aux Roses, France
122 rdf:type schema:Organization
123 grid-institutes:grid.419766.b schema:alternateName Central Research Institute for Physics, P.O.B. 49, H-1525, Budapest, Hungary
124 schema:name Central Research Institute for Physics, P.O.B. 49, H-1525, Budapest, Hungary
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...