Gelation and critical phenomena View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1982

AUTHORS

Dietrich Stauffer , Antonio Coniglio , Mireille Adam

ABSTRACT

For the critical exponents near the sol-gel phase transition, classical theories like those of Flory and Stockmayer predict one set of exponents, whereas scaling theories based on lattice percolation predict different exponents. The two groups of theories differ in their treatment of intramolecular loops, space dimensionality and excluded volume effects. In this article, the differences and similarities between the results of the competing theories are reviewed. For example, a gel fraction like (p-pc)β vanishes for conversion factors p very close to the gel point pc, the weight average molecular weight diverges as (pc-p)−γ for p very slightly below pc, and the radius of macromolecules at the gel point p=pc varies as the ϱ-th power of the number of monomers in that macromolecule. Classical theories predict β=γ=1 and ϱ=1/4 whereas the percolation theory gives β ≃ 0.45, γ ≃ 1.74 and ϱ ≃ 0.40. We also generalize the percolation concept to include interaction effects and concentration fluctuations; in this case the sol-gel phase transition may be connected with a phase separation.Some experimental results are reviewed to check whether the percolation theory agrees with reality; no clear answer has been found so far, due to experimental difficulties. For instance, for the viscosity a power law (pc − p)−0.8, which agrees with one of the percolation ideas has been established in several experiments; the shear modulus of the gel vanishes roughly as (p − pc)3 in some experiments, which agrees better with the classical theory. More... »

PAGES

103-158

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-11471-8_4

DOI

http://dx.doi.org/10.1007/3-540-11471-8_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025371885


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0305", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Organic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Departement de Physique des Systemes Desordonnes, Universit\u00e9 de Provence, Centre St-Jerome, F-13397, Marseille Cedex 13, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Departement de Physique des Systemes Desordonnes, Universit\u00e9 de Provence, Centre St-Jerome, F-13397, Marseille Cedex 13, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stauffer", 
        "givenName": "Dietrich", 
        "id": "sg:person.01170402002.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170402002.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto di Fisica Teorica, Universita di Napoli, Mostra d'Oltremare, pad. 19, I-80125, Napoli, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4691.a", 
          "name": [
            "Instituto di Fisica Teorica, Universita di Napoli, Mostra d'Oltremare, pad. 19, I-80125, Napoli, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coniglio", 
        "givenName": "Antonio", 
        "id": "sg:person.01227217136.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227217136.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DPh-G/PSRM, CEN Saclay, B.P. No. 2, F-91190, Gif-sur-Yvette, France", 
          "id": "http://www.grid.ac/institutes/grid.457334.2", 
          "name": [
            "DPh-G/PSRM, CEN Saclay, B.P. No. 2, F-91190, Gif-sur-Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adam", 
        "givenName": "Mireille", 
        "id": "sg:person.015601423452.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015601423452.91"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1982", 
    "datePublishedReg": "1982-01-01", 
    "description": "For the critical exponents near the sol-gel phase transition, classical theories like those of Flory and Stockmayer predict one set of exponents, whereas scaling theories based on lattice percolation predict different exponents. The two groups of theories differ in their treatment of intramolecular loops, space dimensionality and excluded volume effects. In this article, the differences and similarities between the results of the competing theories are reviewed. For example, a gel fraction like (p-pc)\u03b2 vanishes for conversion factors p very close to the gel point pc, the weight average molecular weight diverges as (pc-p)\u2212\u03b3 for p very slightly below pc, and the radius of macromolecules at the gel point p=pc varies as the \u03f1-th power of the number of monomers in that macromolecule. Classical theories predict \u03b2=\u03b3=1 and \u03f1=1/4 whereas the percolation theory gives \u03b2 \u2243 0.45, \u03b3 \u2243 1.74 and \u03f1 \u2243 0.40. We also generalize the percolation concept to include interaction effects and concentration fluctuations; in this case the sol-gel phase transition may be connected with a phase separation.Some experimental results are reviewed to check whether the percolation theory agrees with reality; no clear answer has been found so far, due to experimental difficulties. For instance, for the viscosity a power law (pc \u2212 p)\u22120.8, which agrees with one of the percolation ideas has been established in several experiments; the shear modulus of the gel vanishes roughly as (p \u2212 pc)3 in some experiments, which agrees better with the classical theory.", 
    "editor": [
      {
        "familyName": "Du\u0161ek", 
        "givenName": "Karel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-11471-8_4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-11471-0", 
        "978-3-540-39086-2"
      ], 
      "name": "Polymer Networks", 
      "type": "Book"
    }, 
    "keywords": [
      "group of theories", 
      "interaction effects", 
      "theory", 
      "clear answer", 
      "difficulties", 
      "sol-gel phase transition", 
      "reality", 
      "classical theory", 
      "effect", 
      "differences", 
      "similarity", 
      "concept", 
      "answers", 
      "idea", 
      "experiments", 
      "group", 
      "article", 
      "results", 
      "number of monomers", 
      "dimensionality", 
      "gel fraction", 
      "phase separation", 
      "phenomenon", 
      "phase transition", 
      "intramolecular loops", 
      "instances", 
      "set", 
      "macromolecules", 
      "varies", 
      "experimental difficulties", 
      "transition", 
      "example", 
      "diverges", 
      "concentration fluctuations", 
      "experimental results", 
      "Flory", 
      "Stockmayer", 
      "treatment", 
      "space dimensionality", 
      "volume effects", 
      "number", 
      "monomers", 
      "percolation theory", 
      "separation", 
      "gel", 
      "gelation", 
      "power", 
      "viscosity", 
      "percolation concepts", 
      "shear modulus", 
      "fraction", 
      "radius", 
      "modulus", 
      "percolation", 
      "loop", 
      "PC", 
      "fluctuations", 
      "cases", 
      "power law", 
      "law", 
      "critical phenomena", 
      "different exponents", 
      "exponent", 
      "critical exponents", 
      "set of exponents", 
      "lattice percolation", 
      "vanishes", 
      "factor P", 
      "PC varies", 
      "percolation ideas", 
      "point p", 
      "conversion factors p", 
      "gel point pc", 
      "point pc", 
      "weight average molecular weight diverges", 
      "average molecular weight diverges", 
      "molecular weight diverges", 
      "weight diverges", 
      "radius of macromolecules", 
      "gel point p", 
      "\u03f1-th power"
    ], 
    "name": "Gelation and critical phenomena", 
    "pagination": "103-158", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025371885"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-11471-8_4"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-11471-8_4", 
      "https://app.dimensions.ai/details/publication/pub.1025371885"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_68.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-11471-8_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-11471-8_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-11471-8_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-11471-8_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-11471-8_4'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      23 PREDICATES      110 URIs      100 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-11471-8_4 schema:about anzsrc-for:03
2 anzsrc-for:0303
3 anzsrc-for:0305
4 anzsrc-for:09
5 anzsrc-for:0912
6 schema:author N0fe811181b334c1b9a46bf3c34c516de
7 schema:datePublished 1982
8 schema:datePublishedReg 1982-01-01
9 schema:description For the critical exponents near the sol-gel phase transition, classical theories like those of Flory and Stockmayer predict one set of exponents, whereas scaling theories based on lattice percolation predict different exponents. The two groups of theories differ in their treatment of intramolecular loops, space dimensionality and excluded volume effects. In this article, the differences and similarities between the results of the competing theories are reviewed. For example, a gel fraction like (p-pc)β vanishes for conversion factors p very close to the gel point pc, the weight average molecular weight diverges as (pc-p)−γ for p very slightly below pc, and the radius of macromolecules at the gel point p=pc varies as the ϱ-th power of the number of monomers in that macromolecule. Classical theories predict β=γ=1 and ϱ=1/4 whereas the percolation theory gives β ≃ 0.45, γ ≃ 1.74 and ϱ ≃ 0.40. We also generalize the percolation concept to include interaction effects and concentration fluctuations; in this case the sol-gel phase transition may be connected with a phase separation.Some experimental results are reviewed to check whether the percolation theory agrees with reality; no clear answer has been found so far, due to experimental difficulties. For instance, for the viscosity a power law (pc − p)−0.8, which agrees with one of the percolation ideas has been established in several experiments; the shear modulus of the gel vanishes roughly as (p − pc)3 in some experiments, which agrees better with the classical theory.
10 schema:editor N66b9b49ed5194652a2e06f46ee2d9438
11 schema:genre chapter
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N443e95fa11a74cfdbe0683adad7f97ac
15 schema:keywords Flory
16 PC
17 PC varies
18 Stockmayer
19 answers
20 article
21 average molecular weight diverges
22 cases
23 classical theory
24 clear answer
25 concentration fluctuations
26 concept
27 conversion factors p
28 critical exponents
29 critical phenomena
30 differences
31 different exponents
32 difficulties
33 dimensionality
34 diverges
35 effect
36 example
37 experimental difficulties
38 experimental results
39 experiments
40 exponent
41 factor P
42 fluctuations
43 fraction
44 gel
45 gel fraction
46 gel point p
47 gel point pc
48 gelation
49 group
50 group of theories
51 idea
52 instances
53 interaction effects
54 intramolecular loops
55 lattice percolation
56 law
57 loop
58 macromolecules
59 modulus
60 molecular weight diverges
61 monomers
62 number
63 number of monomers
64 percolation
65 percolation concepts
66 percolation ideas
67 percolation theory
68 phase separation
69 phase transition
70 phenomenon
71 point p
72 point pc
73 power
74 power law
75 radius
76 radius of macromolecules
77 reality
78 results
79 separation
80 set
81 set of exponents
82 shear modulus
83 similarity
84 sol-gel phase transition
85 space dimensionality
86 theory
87 transition
88 treatment
89 vanishes
90 varies
91 viscosity
92 volume effects
93 weight average molecular weight diverges
94 weight diverges
95 ϱ-th power
96 schema:name Gelation and critical phenomena
97 schema:pagination 103-158
98 schema:productId Naab2af2e09814e7ba587b640dba45259
99 Naeebdaf9784043acae423cf4122b5ae3
100 schema:publisher N9f6d64f1e9ed4d33b71a087ca931d7ea
101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025371885
102 https://doi.org/10.1007/3-540-11471-8_4
103 schema:sdDatePublished 2021-12-01T20:12
104 schema:sdLicense https://scigraph.springernature.com/explorer/license/
105 schema:sdPublisher N3cb2598348f14398933c5e0386f80fb7
106 schema:url https://doi.org/10.1007/3-540-11471-8_4
107 sgo:license sg:explorer/license/
108 sgo:sdDataset chapters
109 rdf:type schema:Chapter
110 N0fe811181b334c1b9a46bf3c34c516de rdf:first sg:person.01170402002.42
111 rdf:rest N3758752297804ec481a96fea86a6ec2d
112 N281befcd7a604286ab32a191b54e9c0e schema:familyName Dušek
113 schema:givenName Karel
114 rdf:type schema:Person
115 N3758752297804ec481a96fea86a6ec2d rdf:first sg:person.01227217136.16
116 rdf:rest Ne13e0f2db9b84b87951552d85d491cfd
117 N3cb2598348f14398933c5e0386f80fb7 schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 N443e95fa11a74cfdbe0683adad7f97ac schema:isbn 978-3-540-11471-0
120 978-3-540-39086-2
121 schema:name Polymer Networks
122 rdf:type schema:Book
123 N66b9b49ed5194652a2e06f46ee2d9438 rdf:first N281befcd7a604286ab32a191b54e9c0e
124 rdf:rest rdf:nil
125 N9f6d64f1e9ed4d33b71a087ca931d7ea schema:name Springer Nature
126 rdf:type schema:Organisation
127 Naab2af2e09814e7ba587b640dba45259 schema:name dimensions_id
128 schema:value pub.1025371885
129 rdf:type schema:PropertyValue
130 Naeebdaf9784043acae423cf4122b5ae3 schema:name doi
131 schema:value 10.1007/3-540-11471-8_4
132 rdf:type schema:PropertyValue
133 Ne13e0f2db9b84b87951552d85d491cfd rdf:first sg:person.015601423452.91
134 rdf:rest rdf:nil
135 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
136 schema:name Chemical Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
139 schema:name Macromolecular and Materials Chemistry
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0305 schema:inDefinedTermSet anzsrc-for:
142 schema:name Organic Chemistry
143 rdf:type schema:DefinedTerm
144 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
145 schema:name Engineering
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
148 schema:name Materials Engineering
149 rdf:type schema:DefinedTerm
150 sg:person.01170402002.42 schema:affiliation grid-institutes:None
151 schema:familyName Stauffer
152 schema:givenName Dietrich
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170402002.42
154 rdf:type schema:Person
155 sg:person.01227217136.16 schema:affiliation grid-institutes:grid.4691.a
156 schema:familyName Coniglio
157 schema:givenName Antonio
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227217136.16
159 rdf:type schema:Person
160 sg:person.015601423452.91 schema:affiliation grid-institutes:grid.457334.2
161 schema:familyName Adam
162 schema:givenName Mireille
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015601423452.91
164 rdf:type schema:Person
165 grid-institutes:None schema:alternateName Departement de Physique des Systemes Desordonnes, Université de Provence, Centre St-Jerome, F-13397, Marseille Cedex 13, France
166 schema:name Departement de Physique des Systemes Desordonnes, Université de Provence, Centre St-Jerome, F-13397, Marseille Cedex 13, France
167 rdf:type schema:Organization
168 grid-institutes:grid.457334.2 schema:alternateName DPh-G/PSRM, CEN Saclay, B.P. No. 2, F-91190, Gif-sur-Yvette, France
169 schema:name DPh-G/PSRM, CEN Saclay, B.P. No. 2, F-91190, Gif-sur-Yvette, France
170 rdf:type schema:Organization
171 grid-institutes:grid.4691.a schema:alternateName Instituto di Fisica Teorica, Universita di Napoli, Mostra d'Oltremare, pad. 19, I-80125, Napoli, Italy
172 schema:name Instituto di Fisica Teorica, Universita di Napoli, Mostra d'Oltremare, pad. 19, I-80125, Napoli, Italy
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...