Probabilistic algorithms for sparse polynomials View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1979

AUTHORS

Richard Zippel

ABSTRACT

In this paper we have tried to demonstrate how sparse techniques can be used to increase the effectiveness of the modular algorithms of Brown and Collins. These techniques can be used for an extremely wide class of problems and can applied to a number of different algorithms including Hensel's lemma. We believe this work has finally laid to rest the bad zero problem. Much of the work here is the direct result of discussion with Barry Trager and Joel Moses whose help we wish to acknowledge. More... »

PAGES

216-226

Book

TITLE

Symbolic and Algebraic Computation

ISBN

978-3-540-09519-4
978-3-540-35128-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-09519-5_73

DOI

http://dx.doi.org/10.1007/3-540-09519-5_73

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030416919


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Laboratory for Computer Science, Massachusetts Institute of Technology, 02139\u00a0Cambridge, Mass., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zippel", 
        "givenName": "Richard", 
        "type": "Person"
      }
    ], 
    "datePublished": "1979", 
    "datePublishedReg": "1979-01-01", 
    "description": "In this paper we have tried to demonstrate how sparse techniques can be used to increase the effectiveness of the modular algorithms of Brown and Collins. These techniques can be used for an extremely wide class of problems and can applied to a number of different algorithms including Hensel's lemma. We believe this work has finally laid to rest the bad zero problem. Much of the work here is the direct result of discussion with Barry Trager and Joel Moses whose help we wish to acknowledge.", 
    "editor": [
      {
        "familyName": "Ng", 
        "givenName": "Edward W.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-09519-5_73", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-09519-4", 
        "978-3-540-35128-3"
      ], 
      "name": "Symbolic and Algebraic Computation", 
      "type": "Book"
    }, 
    "name": "Probabilistic algorithms for sparse polynomials", 
    "pagination": "216-226", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-09519-5_73"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "90e75705dc30f2d499007432ff6f7726899a7a703c20bcd570e1bc80468941e0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030416919"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-09519-5_73", 
      "https://app.dimensions.ai/details/publication/pub.1030416919"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T17:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000052.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-09519-5_73"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-09519-5_73'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-09519-5_73'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-09519-5_73'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-09519-5_73'


 

This table displays all metadata directly associated to this object as RDF triples.

64 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-09519-5_73 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N15566a5d57e144ae838dc68750d718aa
4 schema:datePublished 1979
5 schema:datePublishedReg 1979-01-01
6 schema:description In this paper we have tried to demonstrate how sparse techniques can be used to increase the effectiveness of the modular algorithms of Brown and Collins. These techniques can be used for an extremely wide class of problems and can applied to a number of different algorithms including Hensel's lemma. We believe this work has finally laid to rest the bad zero problem. Much of the work here is the direct result of discussion with Barry Trager and Joel Moses whose help we wish to acknowledge.
7 schema:editor N1a5a1f1f27d0470cb27e412d832f1798
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N3a7d572fdf92498da2b554d7e5a40425
12 schema:name Probabilistic algorithms for sparse polynomials
13 schema:pagination 216-226
14 schema:productId N04a92e11c5054f1eadc3d218da683255
15 N1c36cc0d9b5b4297bf1bb65182e27215
16 N991b96c1a52246b79c015adcdf82e149
17 schema:publisher N033b70ed7921431cb5f5c83644d418c6
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030416919
19 https://doi.org/10.1007/3-540-09519-5_73
20 schema:sdDatePublished 2019-04-15T17:58
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Na5e81c5345a342e7a6a38b648c7e2c60
23 schema:url http://link.springer.com/10.1007/3-540-09519-5_73
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N033b70ed7921431cb5f5c83644d418c6 schema:location Berlin, Heidelberg
28 schema:name Springer Berlin Heidelberg
29 rdf:type schema:Organisation
30 N04a92e11c5054f1eadc3d218da683255 schema:name dimensions_id
31 schema:value pub.1030416919
32 rdf:type schema:PropertyValue
33 N15566a5d57e144ae838dc68750d718aa rdf:first N79e31ce66ee948cabc08eadda83cb2c3
34 rdf:rest rdf:nil
35 N1a5a1f1f27d0470cb27e412d832f1798 rdf:first N86854c552832421f9d614422c63aaac1
36 rdf:rest rdf:nil
37 N1c36cc0d9b5b4297bf1bb65182e27215 schema:name readcube_id
38 schema:value 90e75705dc30f2d499007432ff6f7726899a7a703c20bcd570e1bc80468941e0
39 rdf:type schema:PropertyValue
40 N3a7d572fdf92498da2b554d7e5a40425 schema:isbn 978-3-540-09519-4
41 978-3-540-35128-3
42 schema:name Symbolic and Algebraic Computation
43 rdf:type schema:Book
44 N79e31ce66ee948cabc08eadda83cb2c3 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
45 schema:familyName Zippel
46 schema:givenName Richard
47 rdf:type schema:Person
48 N86854c552832421f9d614422c63aaac1 schema:familyName Ng
49 schema:givenName Edward W.
50 rdf:type schema:Person
51 N991b96c1a52246b79c015adcdf82e149 schema:name doi
52 schema:value 10.1007/3-540-09519-5_73
53 rdf:type schema:PropertyValue
54 Na5e81c5345a342e7a6a38b648c7e2c60 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
57 schema:name Information and Computing Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
60 schema:name Artificial Intelligence and Image Processing
61 rdf:type schema:DefinedTerm
62 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
63 schema:name Laboratory for Computer Science, Massachusetts Institute of Technology, 02139 Cambridge, Mass., USA
64 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...