Non-bijective canonical transformations and their representations in quantum mechanics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1978

AUTHORS

P. Kramer , M. Moshinsky , T. H. Seligman

ABSTRACT

In the present paper we analyze the representations in quantum mechanics of classical canonical transformations that are non-bijective, i.e. not one to one onto. We take as the central example the canonical transformation that changes the Hamiltonian of a one-dimensional oscillator of frequency K−1 into one of frequency k−1 where k, K are relatively prime integers. For the particular case k = 1, the mapping of the original phase space (x,p) onto the new one \((\bar x,\bar p)\)is K to 1 and the equivalent points in (x,p) are related by a cyclic group CK of linear canonical transformations. When formulating this problem in Bargmann Hilbert space the canonical transformation can be related with the conformal transformation w = zK which again is K to 1 and where a group CK also appears. This cyclic group proves fundamental for the determination of representations of the conformal transformation in Bargmann Hilbert space. To begin with it suggests that while we can take in the original Bargmann Hilbert space a single component function, in the new Bargmann Hilbert space we must take a K component one. In this way we can map in a one to one fashion the states and operators in the old and new Bargmann Hilbert spaces. When translating these results to ordinary Hilbert space we get in an ambiguous way the quantization of the observables appearing in the equations that determine the representation of the classical canonical transformation relating oscillators of frequencies K−1 and k−1. Furthermore we also get the solutions of these equations, and the resulting representation is unitary. More... »

PAGES

521-521

Book

TITLE

Group Theoretical Methods in Physics

ISBN

978-3-540-08848-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-08848-2_65

DOI

http://dx.doi.org/10.1007/3-540-08848-2_65

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015928625


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institut f\u00fcr Theoretische Physik, T\u00fcbingen, W. Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kramer", 
        "givenName": "P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Instituto de Fisica, Universidad de Mexico (UNAM), 20\u00a0Mexico, D.F., Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moshinsky", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Instituto de Fisica, Universidad de Mexico (UNAM), 20\u00a0Mexico, D.F., Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seligman", 
        "givenName": "T. H.", 
        "type": "Person"
      }
    ], 
    "datePublished": "1978", 
    "datePublishedReg": "1978-01-01", 
    "description": "In the present paper we analyze the representations in quantum mechanics of classical canonical transformations that are non-bijective, i.e. not one to one onto. We take as the central example the canonical transformation that changes the Hamiltonian of a one-dimensional oscillator of frequency K\u22121 into one of frequency k\u22121 where k, K are relatively prime integers. For the particular case k = 1, the mapping of the original phase space (x,p) onto the new one \\((\\bar x,\\bar p)\\)is K to 1 and the equivalent points in (x,p) are related by a cyclic group CK of linear canonical transformations. When formulating this problem in Bargmann Hilbert space the canonical transformation can be related with the conformal transformation w = zK which again is K to 1 and where a group CK also appears. This cyclic group proves fundamental for the determination of representations of the conformal transformation in Bargmann Hilbert space. To begin with it suggests that while we can take in the original Bargmann Hilbert space a single component function, in the new Bargmann Hilbert space we must take a K component one. In this way we can map in a one to one fashion the states and operators in the old and new Bargmann Hilbert spaces. When translating these results to ordinary Hilbert space we get in an ambiguous way the quantization of the observables appearing in the equations that determine the representation of the classical canonical transformation relating oscillators of frequencies K\u22121 and k\u22121. Furthermore we also get the solutions of these equations, and the resulting representation is unitary.", 
    "editor": [
      {
        "familyName": "Kramer", 
        "givenName": "P.", 
        "type": "Person"
      }, 
      {
        "familyName": "Rieckers", 
        "givenName": "A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-08848-2_65", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-08848-6"
      ], 
      "name": "Group Theoretical Methods in Physics", 
      "type": "Book"
    }, 
    "name": "Non-bijective canonical transformations and their representations in quantum mechanics", 
    "pagination": "521-521", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-08848-2_65"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4be5ae29e73bba8ad35fc094e4c64fe5c7717b9f891ef94454120bdff0c04224"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015928625"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-08848-2_65", 
      "https://app.dimensions.ai/details/publication/pub.1015928625"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000027.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-08848-2_65"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-08848-2_65'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-08848-2_65'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-08848-2_65'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-08848-2_65'


 

This table displays all metadata directly associated to this object as RDF triples.

83 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-08848-2_65 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N6c05af9f46984be9b0aec586d833c811
4 schema:datePublished 1978
5 schema:datePublishedReg 1978-01-01
6 schema:description In the present paper we analyze the representations in quantum mechanics of classical canonical transformations that are non-bijective, i.e. not one to one onto. We take as the central example the canonical transformation that changes the Hamiltonian of a one-dimensional oscillator of frequency K−1 into one of frequency k−1 where k, K are relatively prime integers. For the particular case k = 1, the mapping of the original phase space (x,p) onto the new one \((\bar x,\bar p)\)is K to 1 and the equivalent points in (x,p) are related by a cyclic group CK of linear canonical transformations. When formulating this problem in Bargmann Hilbert space the canonical transformation can be related with the conformal transformation w = zK which again is K to 1 and where a group CK also appears. This cyclic group proves fundamental for the determination of representations of the conformal transformation in Bargmann Hilbert space. To begin with it suggests that while we can take in the original Bargmann Hilbert space a single component function, in the new Bargmann Hilbert space we must take a K component one. In this way we can map in a one to one fashion the states and operators in the old and new Bargmann Hilbert spaces. When translating these results to ordinary Hilbert space we get in an ambiguous way the quantization of the observables appearing in the equations that determine the representation of the classical canonical transformation relating oscillators of frequencies K−1 and k−1. Furthermore we also get the solutions of these equations, and the resulting representation is unitary.
7 schema:editor N2593e8feb09d43a581e1209bb630c846
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N492ef923c236468182a3e51bb1227d6b
12 schema:name Non-bijective canonical transformations and their representations in quantum mechanics
13 schema:pagination 521-521
14 schema:productId Nabc74c3710b04ffba5f90cf6c7c0093a
15 Nada9af4f513c4c78aef09b665811711d
16 Ndcf540168f4e48908b92b41854fc48e7
17 schema:publisher N682bfad49a75465ab90d63524f85ddba
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015928625
19 https://doi.org/10.1007/3-540-08848-2_65
20 schema:sdDatePublished 2019-04-15T14:10
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nd272db0c842d417ebd06a69d87b29869
23 schema:url http://link.springer.com/10.1007/3-540-08848-2_65
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N1c51804fb1b84ade9b73a5e626bb0b7b schema:affiliation Nf43e6143f0e048009eb3fa1e3f8bd78f
28 schema:familyName Kramer
29 schema:givenName P.
30 rdf:type schema:Person
31 N1d1f4fb5d5ea4e7da9fddbb9cdba7ea2 schema:name Instituto de Fisica, Universidad de Mexico (UNAM), 20 Mexico, D.F., Mexico
32 rdf:type schema:Organization
33 N2593e8feb09d43a581e1209bb630c846 rdf:first Ne9e6a336100b4d22b6a2786962e81fe0
34 rdf:rest Ne621be9b93404821a82a6582960f3d95
35 N3fcac30fc5134abcb8f66ce4caae2b09 schema:affiliation N1d1f4fb5d5ea4e7da9fddbb9cdba7ea2
36 schema:familyName Seligman
37 schema:givenName T. H.
38 rdf:type schema:Person
39 N492ef923c236468182a3e51bb1227d6b schema:isbn 978-3-540-08848-6
40 schema:name Group Theoretical Methods in Physics
41 rdf:type schema:Book
42 N49cc7796cbc04992b55bec2ad9ebfd6a schema:affiliation N80ab01f64f35490f9f68c91b4e5fbcc3
43 schema:familyName Moshinsky
44 schema:givenName M.
45 rdf:type schema:Person
46 N5f16b2895afb425698c2da231042c7f9 rdf:first N3fcac30fc5134abcb8f66ce4caae2b09
47 rdf:rest rdf:nil
48 N682bfad49a75465ab90d63524f85ddba schema:location Berlin, Heidelberg
49 schema:name Springer Berlin Heidelberg
50 rdf:type schema:Organisation
51 N6c05af9f46984be9b0aec586d833c811 rdf:first N1c51804fb1b84ade9b73a5e626bb0b7b
52 rdf:rest N769c290e32574706b57a94ba61119e67
53 N769c290e32574706b57a94ba61119e67 rdf:first N49cc7796cbc04992b55bec2ad9ebfd6a
54 rdf:rest N5f16b2895afb425698c2da231042c7f9
55 N7fd57019d0cb4feba4849d7475aeac0f schema:familyName Rieckers
56 schema:givenName A.
57 rdf:type schema:Person
58 N80ab01f64f35490f9f68c91b4e5fbcc3 schema:name Instituto de Fisica, Universidad de Mexico (UNAM), 20 Mexico, D.F., Mexico
59 rdf:type schema:Organization
60 Nabc74c3710b04ffba5f90cf6c7c0093a schema:name readcube_id
61 schema:value 4be5ae29e73bba8ad35fc094e4c64fe5c7717b9f891ef94454120bdff0c04224
62 rdf:type schema:PropertyValue
63 Nada9af4f513c4c78aef09b665811711d schema:name dimensions_id
64 schema:value pub.1015928625
65 rdf:type schema:PropertyValue
66 Nd272db0c842d417ebd06a69d87b29869 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Ndcf540168f4e48908b92b41854fc48e7 schema:name doi
69 schema:value 10.1007/3-540-08848-2_65
70 rdf:type schema:PropertyValue
71 Ne621be9b93404821a82a6582960f3d95 rdf:first N7fd57019d0cb4feba4849d7475aeac0f
72 rdf:rest rdf:nil
73 Ne9e6a336100b4d22b6a2786962e81fe0 schema:familyName Kramer
74 schema:givenName P.
75 rdf:type schema:Person
76 Nf43e6143f0e048009eb3fa1e3f8bd78f schema:name Institut für Theoretische Physik, Tübingen, W. Germany
77 rdf:type schema:Organization
78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
79 schema:name Mathematical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
82 schema:name Pure Mathematics
83 rdf:type schema:DefinedTerm
 




Preview window. Press ESC to close (or click here)


...