High-Quality Shear-Warp Volume Rendering Using Efficient Supersampling and Pre-integration Technique View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2006

AUTHORS

Heewon Kye , Kyoungsu Oh

ABSTRACT

As shear-warp volume rendering is the fastest rendering method, image quality is not good as that of other high-quality rendering methods. In this paper, we propose two methods to improve the image quality of shear-warp volume rendering. First, the supersampling is performed in an intermediate image space. Then is proposed an efficient method to transform between the volume and the image coordinates at the arbitrary ratio. Second, the pre-integrated rendering technique is utilized for shear-warp rendering. To do this, a new data structure called overlapped min-max block is used. Using this structure, the empty space leaping can be performed so the rendering speed is maintained even though when the pre-integrated rendering is applied. Consequently, shear-warp rendering can generate on high-quality images comparable to those generated by the ray-casting without degrading the speed. More... »

PAGES

624-632

Book

TITLE

Advances in Artificial Reality and Tele-Existence

ISBN

978-3-540-49776-9
978-3-540-49779-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11941354_64

DOI

http://dx.doi.org/10.1007/11941354_64

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004178876


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Electrical Engineering and Computer Science, Seoul National University, San 56-1 Shinlim-dong Kwanak-gu, 151-742, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kye", 
        "givenName": "Heewon", 
        "id": "sg:person.015100172437.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015100172437.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Soongsil University", 
          "id": "https://www.grid.ac/institutes/grid.263765.3", 
          "name": [
            "Dept. of Media, Soongsil University, 156-743, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oh", 
        "givenName": "Kyoungsu", 
        "id": "sg:person.015255206723.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015255206723.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/311535.311563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021306479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1099-1778(199907/09)10:3<133::aid-vis203>3.0.co;2-#", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022201486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/383507.383515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026032768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0097-8493(01)00124-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033682908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/192161.192283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039224446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/827051.827068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042569603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/78964.78965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049316147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/285305.285315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050809340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mc.1993.274942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061386354"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "As shear-warp volume rendering is the fastest rendering method, image quality is not good as that of other high-quality rendering methods. In this paper, we propose two methods to improve the image quality of shear-warp volume rendering. First, the supersampling is performed in an intermediate image space. Then is proposed an efficient method to transform between the volume and the image coordinates at the arbitrary ratio. Second, the pre-integrated rendering technique is utilized for shear-warp rendering. To do this, a new data structure called overlapped min-max block is used. Using this structure, the empty space leaping can be performed so the rendering speed is maintained even though when the pre-integrated rendering is applied. Consequently, shear-warp rendering can generate on high-quality images comparable to those generated by the ray-casting without degrading the speed.", 
    "editor": [
      {
        "familyName": "Pan", 
        "givenName": "Zhigeng", 
        "type": "Person"
      }, 
      {
        "familyName": "Cheok", 
        "givenName": "Adrian", 
        "type": "Person"
      }, 
      {
        "familyName": "Haller", 
        "givenName": "Michael", 
        "type": "Person"
      }, 
      {
        "familyName": "Lau", 
        "givenName": "Rynson W. H.", 
        "type": "Person"
      }, 
      {
        "familyName": "Saito", 
        "givenName": "Hideo", 
        "type": "Person"
      }, 
      {
        "familyName": "Liang", 
        "givenName": "Ronghua", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11941354_64", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-49776-9", 
        "978-3-540-49779-0"
      ], 
      "name": "Advances in Artificial Reality and Tele-Existence", 
      "type": "Book"
    }, 
    "name": "High-Quality Shear-Warp Volume Rendering Using Efficient Supersampling and Pre-integration Technique", 
    "pagination": "624-632", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004178876"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11941354_64"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "13e9c755a2708bb46032ce42b73a5c909945a3c9673f53a762b187b1af0641c6"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11941354_64", 
      "https://app.dimensions.ai/details/publication/pub.1004178876"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57874_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F11941354_64"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11941354_64'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11941354_64'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11941354_64'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11941354_64'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11941354_64 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N06500362ee2a40b0aa722bbf9be73426
4 schema:citation https://doi.org/10.1002/(sici)1099-1778(199907/09)10:3<133::aid-vis203>3.0.co;2-#
5 https://doi.org/10.1016/s0097-8493(01)00124-8
6 https://doi.org/10.1109/mc.1993.274942
7 https://doi.org/10.1145/192161.192283
8 https://doi.org/10.1145/285305.285315
9 https://doi.org/10.1145/311535.311563
10 https://doi.org/10.1145/383507.383515
11 https://doi.org/10.1145/78964.78965
12 https://doi.org/10.1145/827051.827068
13 schema:datePublished 2006
14 schema:datePublishedReg 2006-01-01
15 schema:description As shear-warp volume rendering is the fastest rendering method, image quality is not good as that of other high-quality rendering methods. In this paper, we propose two methods to improve the image quality of shear-warp volume rendering. First, the supersampling is performed in an intermediate image space. Then is proposed an efficient method to transform between the volume and the image coordinates at the arbitrary ratio. Second, the pre-integrated rendering technique is utilized for shear-warp rendering. To do this, a new data structure called overlapped min-max block is used. Using this structure, the empty space leaping can be performed so the rendering speed is maintained even though when the pre-integrated rendering is applied. Consequently, shear-warp rendering can generate on high-quality images comparable to those generated by the ray-casting without degrading the speed.
16 schema:editor N6553d3f2d96a416c83ec3654e9c67062
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N3ad264068f14486596d66648e7e14041
21 schema:name High-Quality Shear-Warp Volume Rendering Using Efficient Supersampling and Pre-integration Technique
22 schema:pagination 624-632
23 schema:productId N1dc273b9da6245208fe576b268baaa9e
24 Nb73a444e35e84ef5ab6ddc3f0594dd9f
25 Nbe56cc886a4849548e1d112240dcf48d
26 schema:publisher N9205a7f925e547d6bdfc2f498e7f2e38
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004178876
28 https://doi.org/10.1007/11941354_64
29 schema:sdDatePublished 2019-04-16T07:30
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Na66d67bbcb4b4968b2badba0e23c2c2c
32 schema:url https://link.springer.com/10.1007%2F11941354_64
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N06500362ee2a40b0aa722bbf9be73426 rdf:first sg:person.015100172437.15
37 rdf:rest Nb060156528d74d929aed34ae094387ae
38 N17f05cf9f3334377a4ecd956da70c71d rdf:first Nb0350ba9e2a2456e9025ca72e8122d0a
39 rdf:rest rdf:nil
40 N1abd17dd18f840d6b242e834fcc13ae1 schema:familyName Cheok
41 schema:givenName Adrian
42 rdf:type schema:Person
43 N1dc273b9da6245208fe576b268baaa9e schema:name dimensions_id
44 schema:value pub.1004178876
45 rdf:type schema:PropertyValue
46 N3ad264068f14486596d66648e7e14041 schema:isbn 978-3-540-49776-9
47 978-3-540-49779-0
48 schema:name Advances in Artificial Reality and Tele-Existence
49 rdf:type schema:Book
50 N6553d3f2d96a416c83ec3654e9c67062 rdf:first Na86827e251e74432b1637296a2aa2768
51 rdf:rest Ne5408a3fefac4c70a98430534245869f
52 N74104066acdf472785116d0d0b88c255 rdf:first N82ad6c55836a4e65a21c62793c30d5d9
53 rdf:rest Ncad78ffb00574b86961603dab1ff02aa
54 N768909b78efd41fe8104306b1eea979e schema:familyName Saito
55 schema:givenName Hideo
56 rdf:type schema:Person
57 N82ad6c55836a4e65a21c62793c30d5d9 schema:familyName Lau
58 schema:givenName Rynson W. H.
59 rdf:type schema:Person
60 N9205a7f925e547d6bdfc2f498e7f2e38 schema:location Berlin, Heidelberg
61 schema:name Springer Berlin Heidelberg
62 rdf:type schema:Organisation
63 Na66d67bbcb4b4968b2badba0e23c2c2c schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 Na86827e251e74432b1637296a2aa2768 schema:familyName Pan
66 schema:givenName Zhigeng
67 rdf:type schema:Person
68 Nb0350ba9e2a2456e9025ca72e8122d0a schema:familyName Liang
69 schema:givenName Ronghua
70 rdf:type schema:Person
71 Nb060156528d74d929aed34ae094387ae rdf:first sg:person.015255206723.14
72 rdf:rest rdf:nil
73 Nb73a444e35e84ef5ab6ddc3f0594dd9f schema:name doi
74 schema:value 10.1007/11941354_64
75 rdf:type schema:PropertyValue
76 Nbe56cc886a4849548e1d112240dcf48d schema:name readcube_id
77 schema:value 13e9c755a2708bb46032ce42b73a5c909945a3c9673f53a762b187b1af0641c6
78 rdf:type schema:PropertyValue
79 Nc4933145adbb434fae53b7ffb929ff5f schema:familyName Haller
80 schema:givenName Michael
81 rdf:type schema:Person
82 Ncad78ffb00574b86961603dab1ff02aa rdf:first N768909b78efd41fe8104306b1eea979e
83 rdf:rest N17f05cf9f3334377a4ecd956da70c71d
84 Ncb3a90e0f4a041db96e120d8e2ac7544 rdf:first Nc4933145adbb434fae53b7ffb929ff5f
85 rdf:rest N74104066acdf472785116d0d0b88c255
86 Ne5408a3fefac4c70a98430534245869f rdf:first N1abd17dd18f840d6b242e834fcc13ae1
87 rdf:rest Ncb3a90e0f4a041db96e120d8e2ac7544
88 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
89 schema:name Information and Computing Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
92 schema:name Artificial Intelligence and Image Processing
93 rdf:type schema:DefinedTerm
94 sg:person.015100172437.15 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
95 schema:familyName Kye
96 schema:givenName Heewon
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015100172437.15
98 rdf:type schema:Person
99 sg:person.015255206723.14 schema:affiliation https://www.grid.ac/institutes/grid.263765.3
100 schema:familyName Oh
101 schema:givenName Kyoungsu
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015255206723.14
103 rdf:type schema:Person
104 https://doi.org/10.1002/(sici)1099-1778(199907/09)10:3<133::aid-vis203>3.0.co;2-# schema:sameAs https://app.dimensions.ai/details/publication/pub.1022201486
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/s0097-8493(01)00124-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033682908
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/mc.1993.274942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061386354
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1145/192161.192283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039224446
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1145/285305.285315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050809340
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1145/311535.311563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021306479
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1145/383507.383515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026032768
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1145/78964.78965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049316147
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1145/827051.827068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042569603
121 rdf:type schema:CreativeWork
122 https://www.grid.ac/institutes/grid.263765.3 schema:alternateName Soongsil University
123 schema:name Dept. of Media, Soongsil University, 156-743, Seoul, Korea
124 rdf:type schema:Organization
125 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
126 schema:name School of Electrical Engineering and Computer Science, Seoul National University, San 56-1 Shinlim-dong Kwanak-gu, 151-742, Seoul, Korea
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...