PrefixTreeESpan: A Pattern Growth Algorithm for Mining Embedded Subtrees View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2006

AUTHORS

Lei Zou , Yansheng Lu , Huaming Zhang , Rong Hu

ABSTRACT

Frequent embedded subtree pattern mining is an important data mining problem with broad applications. In this paper, we propose a novel embedded subtree mining algorithm, called PrefixTreeESpan (i.e. Prefix-Tree-projected Embedded-Subtree pattern), which finds a subtree pattern by growing a frequent prefix-tree. Thus, using divide and conquer, mining local length-1 frequent subtree patterns in Prefix-Tree-Projected database recursively will lead to the complete set of frequent patterns. Different fromChopper and XSpanner [4], PrefixTreeESpan does not need a checking process. Our performance study shows that PrefixTreeESpan outperforms Apriori-like algorithm: TreeMiner [6], and pattern-growth algorithms :Chopper , XSpanner . More... »

PAGES

499-505

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11912873_51

DOI

http://dx.doi.org/10.1007/11912873_51

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028512725


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "HuaZhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.33199.31", 
          "name": [
            "HuaZhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zou", 
        "givenName": "Lei", 
        "id": "sg:person.010105712435.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010105712435.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "HuaZhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.33199.31", 
          "name": [
            "HuaZhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Yansheng", 
        "id": "sg:person.010073477267.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010073477267.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Alabama in Huntsville, 35806, Huntsville, AL, USA", 
          "id": "http://www.grid.ac/institutes/grid.265893.3", 
          "name": [
            "The University of Alabama in Huntsville, 35806, Huntsville, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Huaming", 
        "id": "sg:person.012041227127.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012041227127.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "HuaZhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.33199.31", 
          "name": [
            "HuaZhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Rong", 
        "id": "sg:person.013023356052.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013023356052.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "Frequent embedded subtree pattern mining is an important data mining problem with broad applications. In this paper, we propose a novel embedded subtree mining algorithm, called PrefixTreeESpan (i.e. Prefix-Tree-projected Embedded-Subtree pattern), which finds a subtree pattern by growing a frequent prefix-tree. Thus, using divide and conquer, mining local length-1 frequent subtree patterns in Prefix-Tree-Projected database recursively will lead to the complete set of frequent patterns. Different fromChopper and XSpanner [4], PrefixTreeESpan does not need a checking process. Our performance study shows that PrefixTreeESpan outperforms Apriori-like algorithm: TreeMiner [6], and pattern-growth algorithms :Chopper , XSpanner .", 
    "editor": [
      {
        "familyName": "Aberer", 
        "givenName": "Karl", 
        "type": "Person"
      }, 
      {
        "familyName": "Peng", 
        "givenName": "Zhiyong", 
        "type": "Person"
      }, 
      {
        "familyName": "Rundensteiner", 
        "givenName": "Elke A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhang", 
        "givenName": "Yanchun", 
        "type": "Person"
      }, 
      {
        "familyName": "Li", 
        "givenName": "Xuhui", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11912873_51", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-48105-8", 
        "978-3-540-48107-2"
      ], 
      "name": "Web Information Systems \u2013 WISE 2006", 
      "type": "Book"
    }, 
    "keywords": [
      "pattern-growth algorithm", 
      "subtree patterns", 
      "important data mining problem", 
      "data mining problems", 
      "Apriori-like algorithms", 
      "mining algorithms", 
      "pattern mining", 
      "mining problem", 
      "prefix tree", 
      "checking process", 
      "frequent patterns", 
      "growth algorithm", 
      "algorithm", 
      "performance study", 
      "TreeMiner", 
      "mining", 
      "conquer", 
      "subtrees", 
      "complete set", 
      "database", 
      "broad applications", 
      "set", 
      "applications", 
      "divide", 
      "frequent", 
      "patterns", 
      "process", 
      "novel", 
      "study", 
      "chopper", 
      "paper", 
      "problem"
    ], 
    "name": "PrefixTreeESpan: A Pattern Growth Algorithm for Mining Embedded Subtrees", 
    "pagination": "499-505", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028512725"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11912873_51"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11912873_51", 
      "https://app.dimensions.ai/details/publication/pub.1028512725"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_459.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/11912873_51"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11912873_51'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11912873_51'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11912873_51'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11912873_51'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      23 PREDICATES      58 URIs      51 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11912873_51 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N3a1ab95da2fb4458a5859bfa6eee11bb
4 schema:datePublished 2006
5 schema:datePublishedReg 2006-01-01
6 schema:description Frequent embedded subtree pattern mining is an important data mining problem with broad applications. In this paper, we propose a novel embedded subtree mining algorithm, called PrefixTreeESpan (i.e. Prefix-Tree-projected Embedded-Subtree pattern), which finds a subtree pattern by growing a frequent prefix-tree. Thus, using divide and conquer, mining local length-1 frequent subtree patterns in Prefix-Tree-Projected database recursively will lead to the complete set of frequent patterns. Different fromChopper and XSpanner [4], PrefixTreeESpan does not need a checking process. Our performance study shows that PrefixTreeESpan outperforms Apriori-like algorithm: TreeMiner [6], and pattern-growth algorithms :Chopper , XSpanner .
7 schema:editor Nb55c52b469484ff0b2d13aec30b7dd5c
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nb41604ae541f40799c6a8489b35985c5
12 schema:keywords Apriori-like algorithms
13 TreeMiner
14 algorithm
15 applications
16 broad applications
17 checking process
18 chopper
19 complete set
20 conquer
21 data mining problems
22 database
23 divide
24 frequent
25 frequent patterns
26 growth algorithm
27 important data mining problem
28 mining
29 mining algorithms
30 mining problem
31 novel
32 paper
33 pattern mining
34 pattern-growth algorithm
35 patterns
36 performance study
37 prefix tree
38 problem
39 process
40 set
41 study
42 subtree patterns
43 subtrees
44 schema:name PrefixTreeESpan: A Pattern Growth Algorithm for Mining Embedded Subtrees
45 schema:pagination 499-505
46 schema:productId N5e3f6aec5c17437385b3cedc86c76e60
47 N7449f02c9b5f434e97063c87bd80c253
48 schema:publisher N24efe8a68edf4e1297a9d1c3172cba39
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028512725
50 https://doi.org/10.1007/11912873_51
51 schema:sdDatePublished 2022-05-20T07:48
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nd13664cf5afe404dacf8db8e489398cd
54 schema:url https://doi.org/10.1007/11912873_51
55 sgo:license sg:explorer/license/
56 sgo:sdDataset chapters
57 rdf:type schema:Chapter
58 N0d52aa27f8244de79c3478e29537ddd3 schema:familyName Rundensteiner
59 schema:givenName Elke A.
60 rdf:type schema:Person
61 N1488b5cf384149c9ae5a8436f8646be5 rdf:first sg:person.012041227127.88
62 rdf:rest Nd164a642d60e4b319dfd07c2b0c6b0e3
63 N159f54f305a847c5879df88bf86e0feb schema:familyName Aberer
64 schema:givenName Karl
65 rdf:type schema:Person
66 N1e0bf2c5958c4ff597c95c2603ced665 schema:familyName Zhang
67 schema:givenName Yanchun
68 rdf:type schema:Person
69 N24efe8a68edf4e1297a9d1c3172cba39 schema:name Springer Nature
70 rdf:type schema:Organisation
71 N3176a32baf6446ff9a3ce172cc70b755 rdf:first Nab916825adda4fb9a8c38ef7a87445f3
72 rdf:rest rdf:nil
73 N3a1ab95da2fb4458a5859bfa6eee11bb rdf:first sg:person.010105712435.00
74 rdf:rest Na0b529ad3b374a91876279d40b71976a
75 N5e3f6aec5c17437385b3cedc86c76e60 schema:name dimensions_id
76 schema:value pub.1028512725
77 rdf:type schema:PropertyValue
78 N7449f02c9b5f434e97063c87bd80c253 schema:name doi
79 schema:value 10.1007/11912873_51
80 rdf:type schema:PropertyValue
81 N887c0236324f45ecaac1ac59b6020035 rdf:first Na38d4d0faef849d8ad557196af5186f4
82 rdf:rest Nf2b866c00bc348869a193928058b1c1a
83 Na0b529ad3b374a91876279d40b71976a rdf:first sg:person.010073477267.89
84 rdf:rest N1488b5cf384149c9ae5a8436f8646be5
85 Na38d4d0faef849d8ad557196af5186f4 schema:familyName Peng
86 schema:givenName Zhiyong
87 rdf:type schema:Person
88 Nab916825adda4fb9a8c38ef7a87445f3 schema:familyName Li
89 schema:givenName Xuhui
90 rdf:type schema:Person
91 Nb41604ae541f40799c6a8489b35985c5 schema:isbn 978-3-540-48105-8
92 978-3-540-48107-2
93 schema:name Web Information Systems – WISE 2006
94 rdf:type schema:Book
95 Nb55c52b469484ff0b2d13aec30b7dd5c rdf:first N159f54f305a847c5879df88bf86e0feb
96 rdf:rest N887c0236324f45ecaac1ac59b6020035
97 Nd13664cf5afe404dacf8db8e489398cd schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Nd164a642d60e4b319dfd07c2b0c6b0e3 rdf:first sg:person.013023356052.35
100 rdf:rest rdf:nil
101 Nedc4bd0634bb4aa7a0632552af056ee9 rdf:first N1e0bf2c5958c4ff597c95c2603ced665
102 rdf:rest N3176a32baf6446ff9a3ce172cc70b755
103 Nf2b866c00bc348869a193928058b1c1a rdf:first N0d52aa27f8244de79c3478e29537ddd3
104 rdf:rest Nedc4bd0634bb4aa7a0632552af056ee9
105 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
106 schema:name Information and Computing Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
109 schema:name Artificial Intelligence and Image Processing
110 rdf:type schema:DefinedTerm
111 sg:person.010073477267.89 schema:affiliation grid-institutes:grid.33199.31
112 schema:familyName Lu
113 schema:givenName Yansheng
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010073477267.89
115 rdf:type schema:Person
116 sg:person.010105712435.00 schema:affiliation grid-institutes:grid.33199.31
117 schema:familyName Zou
118 schema:givenName Lei
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010105712435.00
120 rdf:type schema:Person
121 sg:person.012041227127.88 schema:affiliation grid-institutes:grid.265893.3
122 schema:familyName Zhang
123 schema:givenName Huaming
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012041227127.88
125 rdf:type schema:Person
126 sg:person.013023356052.35 schema:affiliation grid-institutes:grid.33199.31
127 schema:familyName Hu
128 schema:givenName Rong
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013023356052.35
130 rdf:type schema:Person
131 grid-institutes:grid.265893.3 schema:alternateName The University of Alabama in Huntsville, 35806, Huntsville, AL, USA
132 schema:name The University of Alabama in Huntsville, 35806, Huntsville, AL, USA
133 rdf:type schema:Organization
134 grid-institutes:grid.33199.31 schema:alternateName HuaZhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P.R. China
135 schema:name HuaZhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P.R. China
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...