Prediction of Moving Object Location Based on Frequent Trajectories View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2006

AUTHORS

Mikołaj Morzy

ABSTRACT

Recent advances in wireless sensors and position technology provide us with unprecedent amount of moving object data. The volume of geospatial data gathered from moving objects defies human ability to analyze the stream of input data. Therefore, new methods for mining and digesting of moving object data are urgently needed. One of the popular services available for moving objects is the prediction of the unknown location of an object. In this paper we present a new method for predicting the location of a moving object. Our method uses the past trajectory of the object and combines it with movement rules discovered in the moving objects database. Our original contribution includes the formulation of the location prediction model, the design of an efficient algorithm for mining movement rules, the proposition of four strategies for movement rule matching with respect to a given object trajectory, and the experimental evaluation of the proposed model. More... »

PAGES

583-592

References to SciGraph publications

Book

TITLE

Computer and Information Sciences – ISCIS 2006

ISBN

978-3-540-47242-1
978-3-540-47243-8

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11902140_62

DOI

http://dx.doi.org/10.1007/11902140_62

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002222976


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pozna\u0144 University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6963.a", 
          "name": [
            "Institute of Computing Science, Pozna\u00f1 University of Technology, Piotrowo 2, 60-965, Pozna\u00f1, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morzy", 
        "givenName": "Miko\u0142aj", 
        "id": "sg:person.010046024017.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010046024017.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/940923.940934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004703882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1014052.1014129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015038078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-60159-7_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016857296", 
          "https://doi.org/10.1007/3-540-60159-7_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015231126594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024650437", 
          "https://doi.org/10.1023/a:1015231126594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1014052.1014080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025432887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009843930701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026946957", 
          "https://doi.org/10.1023/a:1009843930701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11687238_40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030742045", 
          "https://doi.org/10.1007/11687238_40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11687238_40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030742045", 
          "https://doi.org/10.1007/11687238_40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-45072-6_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051724679", 
          "https://doi.org/10.1007/978-3-540-45072-6_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-45072-6_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051724679", 
          "https://doi.org/10.1007/978-3-540-45072-6_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1007568.1007637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052791397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.1995.380415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094007712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.1999.754913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094268582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/dexa.2002.1045979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095126190"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "Recent advances in wireless sensors and position technology provide us with unprecedent amount of moving object data. The volume of geospatial data gathered from moving objects defies human ability to analyze the stream of input data. Therefore, new methods for mining and digesting of moving object data are urgently needed. One of the popular services available for moving objects is the prediction of the unknown location of an object. In this paper we present a new method for predicting the location of a moving object. Our method uses the past trajectory of the object and combines it with movement rules discovered in the moving objects database. Our original contribution includes the formulation of the location prediction model, the design of an efficient algorithm for mining movement rules, the proposition of four strategies for movement rule matching with respect to a given object trajectory, and the experimental evaluation of the proposed model.", 
    "editor": [
      {
        "familyName": "Levi", 
        "givenName": "Albert", 
        "type": "Person"
      }, 
      {
        "familyName": "Sava\u015f", 
        "givenName": "Erkay", 
        "type": "Person"
      }, 
      {
        "familyName": "Yenig\u00fcn", 
        "givenName": "H\u00fcsn\u00fc", 
        "type": "Person"
      }, 
      {
        "familyName": "Balc\u0131soy", 
        "givenName": "Selim", 
        "type": "Person"
      }, 
      {
        "familyName": "Sayg\u0131n", 
        "givenName": "Y\u00fccel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11902140_62", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-47242-1", 
        "978-3-540-47243-8"
      ], 
      "name": "Computer and Information Sciences \u2013 ISCIS 2006", 
      "type": "Book"
    }, 
    "name": "Prediction of Moving Object Location Based on Frequent Trajectories", 
    "pagination": "583-592", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002222976"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11902140_62"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0a9590c7c3ee929ee876995437cb26fd26b3d14b52f33669256992f2c492cc40"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11902140_62", 
      "https://app.dimensions.ai/details/publication/pub.1002222976"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57895_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F11902140_62"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11902140_62'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11902140_62'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11902140_62'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11902140_62'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11902140_62 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Ndbe883672e134eb2b91210aeb3cbc47f
4 schema:citation sg:pub.10.1007/11687238_40
5 sg:pub.10.1007/3-540-60159-7_4
6 sg:pub.10.1007/978-3-540-45072-6_19
7 sg:pub.10.1023/a:1009843930701
8 sg:pub.10.1023/a:1015231126594
9 https://doi.org/10.1109/dexa.2002.1045979
10 https://doi.org/10.1109/icde.1995.380415
11 https://doi.org/10.1109/icde.1999.754913
12 https://doi.org/10.1145/1007568.1007637
13 https://doi.org/10.1145/1014052.1014080
14 https://doi.org/10.1145/1014052.1014129
15 https://doi.org/10.1145/940923.940934
16 schema:datePublished 2006
17 schema:datePublishedReg 2006-01-01
18 schema:description Recent advances in wireless sensors and position technology provide us with unprecedent amount of moving object data. The volume of geospatial data gathered from moving objects defies human ability to analyze the stream of input data. Therefore, new methods for mining and digesting of moving object data are urgently needed. One of the popular services available for moving objects is the prediction of the unknown location of an object. In this paper we present a new method for predicting the location of a moving object. Our method uses the past trajectory of the object and combines it with movement rules discovered in the moving objects database. Our original contribution includes the formulation of the location prediction model, the design of an efficient algorithm for mining movement rules, the proposition of four strategies for movement rule matching with respect to a given object trajectory, and the experimental evaluation of the proposed model.
19 schema:editor Ncd4771295b164003bb18b1769b84044d
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf Ndfddae6cac694f908a26da17ae6db18d
24 schema:name Prediction of Moving Object Location Based on Frequent Trajectories
25 schema:pagination 583-592
26 schema:productId N0a361cd0c360437ca0fe41298ca93b73
27 N69bdfc88a7344ca2ad36d1e6f22f1aa3
28 Nf64f1918a2f7446b93de9352e95666c9
29 schema:publisher N2372bc74ddc045548eb739bf8e8996d3
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002222976
31 https://doi.org/10.1007/11902140_62
32 schema:sdDatePublished 2019-04-16T07:31
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Nc8f13b50124a427ab360dddfc945ea71
35 schema:url https://link.springer.com/10.1007%2F11902140_62
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N0a361cd0c360437ca0fe41298ca93b73 schema:name dimensions_id
40 schema:value pub.1002222976
41 rdf:type schema:PropertyValue
42 N2084ce7bbe8c46199e89ced73ae8ad42 schema:familyName Balcısoy
43 schema:givenName Selim
44 rdf:type schema:Person
45 N2203a09ef2844cf7a4f997af2725b8c5 schema:familyName Yenigün
46 schema:givenName Hüsnü
47 rdf:type schema:Person
48 N2372bc74ddc045548eb739bf8e8996d3 schema:location Berlin, Heidelberg
49 schema:name Springer Berlin Heidelberg
50 rdf:type schema:Organisation
51 N28b1ea833b3f46e088b8b328b508fa9d schema:familyName Saygın
52 schema:givenName Yücel
53 rdf:type schema:Person
54 N2d60d93c4e5b45b1b60f166d2ca8e70a rdf:first N2084ce7bbe8c46199e89ced73ae8ad42
55 rdf:rest N4080636be50a4a36a2082ab49dfff56d
56 N4080636be50a4a36a2082ab49dfff56d rdf:first N28b1ea833b3f46e088b8b328b508fa9d
57 rdf:rest rdf:nil
58 N4d179cfbcaec427f8db4763ef063fdf3 schema:familyName Savaş
59 schema:givenName Erkay
60 rdf:type schema:Person
61 N69bdfc88a7344ca2ad36d1e6f22f1aa3 schema:name readcube_id
62 schema:value 0a9590c7c3ee929ee876995437cb26fd26b3d14b52f33669256992f2c492cc40
63 rdf:type schema:PropertyValue
64 N8ba55ef1b23d47feabee93bf76e9a2df schema:familyName Levi
65 schema:givenName Albert
66 rdf:type schema:Person
67 Na4a96130a6bb491199953969a5ffa2fd rdf:first N2203a09ef2844cf7a4f997af2725b8c5
68 rdf:rest N2d60d93c4e5b45b1b60f166d2ca8e70a
69 Nc8f13b50124a427ab360dddfc945ea71 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Ncd4771295b164003bb18b1769b84044d rdf:first N8ba55ef1b23d47feabee93bf76e9a2df
72 rdf:rest Nf5179a07878e41339ef4c0400efee793
73 Ndbe883672e134eb2b91210aeb3cbc47f rdf:first sg:person.010046024017.23
74 rdf:rest rdf:nil
75 Ndfddae6cac694f908a26da17ae6db18d schema:isbn 978-3-540-47242-1
76 978-3-540-47243-8
77 schema:name Computer and Information Sciences – ISCIS 2006
78 rdf:type schema:Book
79 Nf5179a07878e41339ef4c0400efee793 rdf:first N4d179cfbcaec427f8db4763ef063fdf3
80 rdf:rest Na4a96130a6bb491199953969a5ffa2fd
81 Nf64f1918a2f7446b93de9352e95666c9 schema:name doi
82 schema:value 10.1007/11902140_62
83 rdf:type schema:PropertyValue
84 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
85 schema:name Information and Computing Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
88 schema:name Information Systems
89 rdf:type schema:DefinedTerm
90 sg:person.010046024017.23 schema:affiliation https://www.grid.ac/institutes/grid.6963.a
91 schema:familyName Morzy
92 schema:givenName Mikołaj
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010046024017.23
94 rdf:type schema:Person
95 sg:pub.10.1007/11687238_40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030742045
96 https://doi.org/10.1007/11687238_40
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/3-540-60159-7_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016857296
99 https://doi.org/10.1007/3-540-60159-7_4
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/978-3-540-45072-6_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051724679
102 https://doi.org/10.1007/978-3-540-45072-6_19
103 rdf:type schema:CreativeWork
104 sg:pub.10.1023/a:1009843930701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026946957
105 https://doi.org/10.1023/a:1009843930701
106 rdf:type schema:CreativeWork
107 sg:pub.10.1023/a:1015231126594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024650437
108 https://doi.org/10.1023/a:1015231126594
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/dexa.2002.1045979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095126190
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/icde.1995.380415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094007712
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/icde.1999.754913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094268582
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1145/1007568.1007637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791397
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1145/1014052.1014080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025432887
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1145/1014052.1014129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015038078
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1145/940923.940934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004703882
123 rdf:type schema:CreativeWork
124 https://www.grid.ac/institutes/grid.6963.a schema:alternateName Poznań University of Technology
125 schema:name Institute of Computing Science, Poznañ University of Technology, Piotrowo 2, 60-965, Poznañ, Poland
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...