Prediction of Moving Object Location Based on Frequent Trajectories View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2006

AUTHORS

Mikołaj Morzy

ABSTRACT

Recent advances in wireless sensors and position technology provide us with unprecedent amount of moving object data. The volume of geospatial data gathered from moving objects defies human ability to analyze the stream of input data. Therefore, new methods for mining and digesting of moving object data are urgently needed. One of the popular services available for moving objects is the prediction of the unknown location of an object. In this paper we present a new method for predicting the location of a moving object. Our method uses the past trajectory of the object and combines it with movement rules discovered in the moving objects database. Our original contribution includes the formulation of the location prediction model, the design of an efficient algorithm for mining movement rules, the proposition of four strategies for movement rule matching with respect to a given object trajectory, and the experimental evaluation of the proposed model. More... »

PAGES

583-592

References to SciGraph publications

Book

TITLE

Computer and Information Sciences – ISCIS 2006

ISBN

978-3-540-47242-1
978-3-540-47243-8

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11902140_62

DOI

http://dx.doi.org/10.1007/11902140_62

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002222976


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pozna\u0144 University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6963.a", 
          "name": [
            "Institute of Computing Science, Pozna\u00f1 University of Technology, Piotrowo 2, 60-965, Pozna\u00f1, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morzy", 
        "givenName": "Miko\u0142aj", 
        "id": "sg:person.010046024017.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010046024017.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/940923.940934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004703882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1014052.1014129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015038078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-60159-7_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016857296", 
          "https://doi.org/10.1007/3-540-60159-7_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015231126594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024650437", 
          "https://doi.org/10.1023/a:1015231126594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1014052.1014080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025432887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009843930701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026946957", 
          "https://doi.org/10.1023/a:1009843930701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11687238_40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030742045", 
          "https://doi.org/10.1007/11687238_40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11687238_40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030742045", 
          "https://doi.org/10.1007/11687238_40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-45072-6_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051724679", 
          "https://doi.org/10.1007/978-3-540-45072-6_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-45072-6_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051724679", 
          "https://doi.org/10.1007/978-3-540-45072-6_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1007568.1007637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052791397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.1995.380415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094007712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.1999.754913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094268582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/dexa.2002.1045979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095126190"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "Recent advances in wireless sensors and position technology provide us with unprecedent amount of moving object data. The volume of geospatial data gathered from moving objects defies human ability to analyze the stream of input data. Therefore, new methods for mining and digesting of moving object data are urgently needed. One of the popular services available for moving objects is the prediction of the unknown location of an object. In this paper we present a new method for predicting the location of a moving object. Our method uses the past trajectory of the object and combines it with movement rules discovered in the moving objects database. Our original contribution includes the formulation of the location prediction model, the design of an efficient algorithm for mining movement rules, the proposition of four strategies for movement rule matching with respect to a given object trajectory, and the experimental evaluation of the proposed model.", 
    "editor": [
      {
        "familyName": "Levi", 
        "givenName": "Albert", 
        "type": "Person"
      }, 
      {
        "familyName": "Sava\u015f", 
        "givenName": "Erkay", 
        "type": "Person"
      }, 
      {
        "familyName": "Yenig\u00fcn", 
        "givenName": "H\u00fcsn\u00fc", 
        "type": "Person"
      }, 
      {
        "familyName": "Balc\u0131soy", 
        "givenName": "Selim", 
        "type": "Person"
      }, 
      {
        "familyName": "Sayg\u0131n", 
        "givenName": "Y\u00fccel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11902140_62", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-47242-1", 
        "978-3-540-47243-8"
      ], 
      "name": "Computer and Information Sciences \u2013 ISCIS 2006", 
      "type": "Book"
    }, 
    "name": "Prediction of Moving Object Location Based on Frequent Trajectories", 
    "pagination": "583-592", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002222976"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11902140_62"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0a9590c7c3ee929ee876995437cb26fd26b3d14b52f33669256992f2c492cc40"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11902140_62", 
      "https://app.dimensions.ai/details/publication/pub.1002222976"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57895_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F11902140_62"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11902140_62'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11902140_62'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11902140_62'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11902140_62'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11902140_62 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N264046f25e424e5abb0049ec7fe65551
4 schema:citation sg:pub.10.1007/11687238_40
5 sg:pub.10.1007/3-540-60159-7_4
6 sg:pub.10.1007/978-3-540-45072-6_19
7 sg:pub.10.1023/a:1009843930701
8 sg:pub.10.1023/a:1015231126594
9 https://doi.org/10.1109/dexa.2002.1045979
10 https://doi.org/10.1109/icde.1995.380415
11 https://doi.org/10.1109/icde.1999.754913
12 https://doi.org/10.1145/1007568.1007637
13 https://doi.org/10.1145/1014052.1014080
14 https://doi.org/10.1145/1014052.1014129
15 https://doi.org/10.1145/940923.940934
16 schema:datePublished 2006
17 schema:datePublishedReg 2006-01-01
18 schema:description Recent advances in wireless sensors and position technology provide us with unprecedent amount of moving object data. The volume of geospatial data gathered from moving objects defies human ability to analyze the stream of input data. Therefore, new methods for mining and digesting of moving object data are urgently needed. One of the popular services available for moving objects is the prediction of the unknown location of an object. In this paper we present a new method for predicting the location of a moving object. Our method uses the past trajectory of the object and combines it with movement rules discovered in the moving objects database. Our original contribution includes the formulation of the location prediction model, the design of an efficient algorithm for mining movement rules, the proposition of four strategies for movement rule matching with respect to a given object trajectory, and the experimental evaluation of the proposed model.
19 schema:editor N7c3dfbde45144c718ac5a118358f966b
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf Nc13e453efddc417a80a54ae946a05f3e
24 schema:name Prediction of Moving Object Location Based on Frequent Trajectories
25 schema:pagination 583-592
26 schema:productId N3f2a48239ca448609a6e08a1f7490e78
27 N4fb283113bd540f7a0367430c83136f5
28 N7e5313ecdc27496c96ca78a90ccab3b2
29 schema:publisher Nfa0c4131496242eca94ea7c1cf930bcb
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002222976
31 https://doi.org/10.1007/11902140_62
32 schema:sdDatePublished 2019-04-16T07:31
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N54b2291f9f3d45dfb51a5001e161619c
35 schema:url https://link.springer.com/10.1007%2F11902140_62
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N0520d2d46a2d41e68dbd22af648cbc18 schema:familyName Balcısoy
40 schema:givenName Selim
41 rdf:type schema:Person
42 N19a54784a2e64fc595d7af404ca3dbcc rdf:first Ncb7fb7ee90f54c129705a7a6160c4cf0
43 rdf:rest N332cb6d67aab4a2e917b12cb539aacb6
44 N264046f25e424e5abb0049ec7fe65551 rdf:first sg:person.010046024017.23
45 rdf:rest rdf:nil
46 N275e807c644e4ffe9b3bc2083f662c7c rdf:first N0520d2d46a2d41e68dbd22af648cbc18
47 rdf:rest Nc09f3d8756684525b1470f6bc1cf9ff3
48 N332cb6d67aab4a2e917b12cb539aacb6 rdf:first N579b157aea5b4f12a71bc7a3f2da44bf
49 rdf:rest N275e807c644e4ffe9b3bc2083f662c7c
50 N3f2a48239ca448609a6e08a1f7490e78 schema:name readcube_id
51 schema:value 0a9590c7c3ee929ee876995437cb26fd26b3d14b52f33669256992f2c492cc40
52 rdf:type schema:PropertyValue
53 N4fb283113bd540f7a0367430c83136f5 schema:name doi
54 schema:value 10.1007/11902140_62
55 rdf:type schema:PropertyValue
56 N54b2291f9f3d45dfb51a5001e161619c schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N579b157aea5b4f12a71bc7a3f2da44bf schema:familyName Yenigün
59 schema:givenName Hüsnü
60 rdf:type schema:Person
61 N6a943fd71acb40908d78685e95f99163 schema:familyName Levi
62 schema:givenName Albert
63 rdf:type schema:Person
64 N7c3dfbde45144c718ac5a118358f966b rdf:first N6a943fd71acb40908d78685e95f99163
65 rdf:rest N19a54784a2e64fc595d7af404ca3dbcc
66 N7e5313ecdc27496c96ca78a90ccab3b2 schema:name dimensions_id
67 schema:value pub.1002222976
68 rdf:type schema:PropertyValue
69 Nb4cf4a2fbc19452a8cfb2c56c824d59a schema:familyName Saygın
70 schema:givenName Yücel
71 rdf:type schema:Person
72 Nc09f3d8756684525b1470f6bc1cf9ff3 rdf:first Nb4cf4a2fbc19452a8cfb2c56c824d59a
73 rdf:rest rdf:nil
74 Nc13e453efddc417a80a54ae946a05f3e schema:isbn 978-3-540-47242-1
75 978-3-540-47243-8
76 schema:name Computer and Information Sciences – ISCIS 2006
77 rdf:type schema:Book
78 Ncb7fb7ee90f54c129705a7a6160c4cf0 schema:familyName Savaş
79 schema:givenName Erkay
80 rdf:type schema:Person
81 Nfa0c4131496242eca94ea7c1cf930bcb schema:location Berlin, Heidelberg
82 schema:name Springer Berlin Heidelberg
83 rdf:type schema:Organisation
84 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
85 schema:name Information and Computing Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
88 schema:name Information Systems
89 rdf:type schema:DefinedTerm
90 sg:person.010046024017.23 schema:affiliation https://www.grid.ac/institutes/grid.6963.a
91 schema:familyName Morzy
92 schema:givenName Mikołaj
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010046024017.23
94 rdf:type schema:Person
95 sg:pub.10.1007/11687238_40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030742045
96 https://doi.org/10.1007/11687238_40
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/3-540-60159-7_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016857296
99 https://doi.org/10.1007/3-540-60159-7_4
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/978-3-540-45072-6_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051724679
102 https://doi.org/10.1007/978-3-540-45072-6_19
103 rdf:type schema:CreativeWork
104 sg:pub.10.1023/a:1009843930701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026946957
105 https://doi.org/10.1023/a:1009843930701
106 rdf:type schema:CreativeWork
107 sg:pub.10.1023/a:1015231126594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024650437
108 https://doi.org/10.1023/a:1015231126594
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/dexa.2002.1045979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095126190
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/icde.1995.380415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094007712
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/icde.1999.754913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094268582
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1145/1007568.1007637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791397
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1145/1014052.1014080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025432887
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1145/1014052.1014129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015038078
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1145/940923.940934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004703882
123 rdf:type schema:CreativeWork
124 https://www.grid.ac/institutes/grid.6963.a schema:alternateName Poznań University of Technology
125 schema:name Institute of Computing Science, Poznañ University of Technology, Piotrowo 2, 60-965, Poznañ, Poland
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...