Intelligent Computing and Sensing for Active Safety on Construction Sites View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2006

AUTHORS

Carlos H. Caldas , Seokho Chi , Jochen Teizer , Jie Gong

ABSTRACT

On obstacle-cluttered construction sites where heavy equipment is in use, safety issues are of major concern. The main objective of this paper is to develop a framework with algorithms for obstacle avoidance and path planning based on real-time three-dimensional job site models to improve safety during equipment operation. These algorithms have the potential to prevent collisions between heavy equipment vehicles and other on-site objects. In this study, algorithms were developed for image data acquisition, real-time 3D spatial modeling, obstacle avoidance, and shortest path finding and were all integrated to construct a comprehensive collision-free path. Preliminary research results show that the proposed approach is feasible and has the potential to be used as an active safety feature for heavy equipment. More... »

PAGES

101-108

Book

TITLE

Intelligent Computing in Engineering and Architecture

ISBN

978-3-540-46246-0
978-3-540-46247-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11888598_11

DOI

http://dx.doi.org/10.1007/11888598_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039185668


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The University of Texas at Austin", 
          "id": "https://www.grid.ac/institutes/grid.89336.37", 
          "name": [
            "Dept. of Civil, Architectural and Environmental Engineering, The University of Texas, 78712, Austin, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Caldas", 
        "givenName": "Carlos H.", 
        "id": "sg:person.014217136721.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014217136721.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas at Austin", 
          "id": "https://www.grid.ac/institutes/grid.89336.37", 
          "name": [
            "Dept. of Civil, Architectural and Environmental Engineering, The University of Texas, 78712, Austin, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chi", 
        "givenName": "Seokho", 
        "id": "sg:person.013174151440.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174151440.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas at Austin", 
          "id": "https://www.grid.ac/institutes/grid.89336.37", 
          "name": [
            "Dept. of Civil, Architectural and Environmental Engineering, The University of Texas, 78712, Austin, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Teizer", 
        "givenName": "Jochen", 
        "id": "sg:person.014111141477.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014111141477.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas at Austin", 
          "id": "https://www.grid.ac/institutes/grid.89336.37", 
          "name": [
            "Dept. of Civil, Architectural and Environmental Engineering, The University of Texas, 78712, Austin, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gong", 
        "givenName": "Jie", 
        "id": "sg:person.011616101262.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011616101262.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1474-0346(03)00018-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003851973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-0346(03)00018-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003851973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.1985.1087316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086187531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.2002.1014784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095046672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.22260/isarc2005/0026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095925565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/40513(279)82", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1097142406"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "On obstacle-cluttered construction sites where heavy equipment is in use, safety issues are of major concern. The main objective of this paper is to develop a framework with algorithms for obstacle avoidance and path planning based on real-time three-dimensional job site models to improve safety during equipment operation. These algorithms have the potential to prevent collisions between heavy equipment vehicles and other on-site objects. In this study, algorithms were developed for image data acquisition, real-time 3D spatial modeling, obstacle avoidance, and shortest path finding and were all integrated to construct a comprehensive collision-free path. Preliminary research results show that the proposed approach is feasible and has the potential to be used as an active safety feature for heavy equipment.", 
    "editor": [
      {
        "familyName": "Smith", 
        "givenName": "Ian F. C.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11888598_11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-46246-0", 
        "978-3-540-46247-7"
      ], 
      "name": "Intelligent Computing in Engineering and Architecture", 
      "type": "Book"
    }, 
    "name": "Intelligent Computing and Sensing for Active Safety on Construction Sites", 
    "pagination": "101-108", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039185668"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11888598_11"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "baa902551d2b0cb34587b373e5d3e40717ba96435db54db86dd2eb845a773f50"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11888598_11", 
      "https://app.dimensions.ai/details/publication/pub.1039185668"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000355_0000000355/records_52997_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F11888598_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11888598_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11888598_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11888598_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11888598_11'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11888598_11 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nb75490f0399847a9bbca24bee01e6fe4
4 schema:citation https://doi.org/10.1016/s1474-0346(03)00018-1
5 https://doi.org/10.1061/40513(279)82
6 https://doi.org/10.1109/robot.1985.1087316
7 https://doi.org/10.1109/robot.2002.1014784
8 https://doi.org/10.22260/isarc2005/0026
9 schema:datePublished 2006
10 schema:datePublishedReg 2006-01-01
11 schema:description On obstacle-cluttered construction sites where heavy equipment is in use, safety issues are of major concern. The main objective of this paper is to develop a framework with algorithms for obstacle avoidance and path planning based on real-time three-dimensional job site models to improve safety during equipment operation. These algorithms have the potential to prevent collisions between heavy equipment vehicles and other on-site objects. In this study, algorithms were developed for image data acquisition, real-time 3D spatial modeling, obstacle avoidance, and shortest path finding and were all integrated to construct a comprehensive collision-free path. Preliminary research results show that the proposed approach is feasible and has the potential to be used as an active safety feature for heavy equipment.
12 schema:editor Nd1fb5f9d6e614b589542a6a021c78fa2
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf Ne9250f3ba7d14c42a7b6d1a0c1e26fad
17 schema:name Intelligent Computing and Sensing for Active Safety on Construction Sites
18 schema:pagination 101-108
19 schema:productId N18fae9fac9094531ad3f31fb0848e71f
20 N1eb0118fa06041e18b00fd39a04fc326
21 Nf2739dc5d5e545f7863eccf2e0ef9be2
22 schema:publisher Nfb1c443c34314d11aac7cfb1708f07cf
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039185668
24 https://doi.org/10.1007/11888598_11
25 schema:sdDatePublished 2019-04-16T07:26
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N43075ca39d2b4e83bbc92fb34964bfdc
28 schema:url https://link.springer.com/10.1007%2F11888598_11
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N18fae9fac9094531ad3f31fb0848e71f schema:name doi
33 schema:value 10.1007/11888598_11
34 rdf:type schema:PropertyValue
35 N1eb0118fa06041e18b00fd39a04fc326 schema:name dimensions_id
36 schema:value pub.1039185668
37 rdf:type schema:PropertyValue
38 N3b80ce6c209d45e396adc5eafafe8cf4 schema:familyName Smith
39 schema:givenName Ian F. C.
40 rdf:type schema:Person
41 N43075ca39d2b4e83bbc92fb34964bfdc schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N4547fa714cd347ceba5793ccec86b535 rdf:first sg:person.013174151440.34
44 rdf:rest N9197b8c19a2449c08fd5b21c38fab068
45 N55870895ec3245a38aabfa7ca685e10b rdf:first sg:person.011616101262.37
46 rdf:rest rdf:nil
47 N9197b8c19a2449c08fd5b21c38fab068 rdf:first sg:person.014111141477.19
48 rdf:rest N55870895ec3245a38aabfa7ca685e10b
49 Nb75490f0399847a9bbca24bee01e6fe4 rdf:first sg:person.014217136721.21
50 rdf:rest N4547fa714cd347ceba5793ccec86b535
51 Nd1fb5f9d6e614b589542a6a021c78fa2 rdf:first N3b80ce6c209d45e396adc5eafafe8cf4
52 rdf:rest rdf:nil
53 Ne9250f3ba7d14c42a7b6d1a0c1e26fad schema:isbn 978-3-540-46246-0
54 978-3-540-46247-7
55 schema:name Intelligent Computing in Engineering and Architecture
56 rdf:type schema:Book
57 Nf2739dc5d5e545f7863eccf2e0ef9be2 schema:name readcube_id
58 schema:value baa902551d2b0cb34587b373e5d3e40717ba96435db54db86dd2eb845a773f50
59 rdf:type schema:PropertyValue
60 Nfb1c443c34314d11aac7cfb1708f07cf schema:location Berlin, Heidelberg
61 schema:name Springer Berlin Heidelberg
62 rdf:type schema:Organisation
63 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
64 schema:name Information and Computing Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
67 schema:name Artificial Intelligence and Image Processing
68 rdf:type schema:DefinedTerm
69 sg:person.011616101262.37 schema:affiliation https://www.grid.ac/institutes/grid.89336.37
70 schema:familyName Gong
71 schema:givenName Jie
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011616101262.37
73 rdf:type schema:Person
74 sg:person.013174151440.34 schema:affiliation https://www.grid.ac/institutes/grid.89336.37
75 schema:familyName Chi
76 schema:givenName Seokho
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174151440.34
78 rdf:type schema:Person
79 sg:person.014111141477.19 schema:affiliation https://www.grid.ac/institutes/grid.89336.37
80 schema:familyName Teizer
81 schema:givenName Jochen
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014111141477.19
83 rdf:type schema:Person
84 sg:person.014217136721.21 schema:affiliation https://www.grid.ac/institutes/grid.89336.37
85 schema:familyName Caldas
86 schema:givenName Carlos H.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014217136721.21
88 rdf:type schema:Person
89 https://doi.org/10.1016/s1474-0346(03)00018-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003851973
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1061/40513(279)82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1097142406
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1109/robot.1985.1087316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086187531
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/robot.2002.1014784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095046672
96 rdf:type schema:CreativeWork
97 https://doi.org/10.22260/isarc2005/0026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095925565
98 rdf:type schema:CreativeWork
99 https://www.grid.ac/institutes/grid.89336.37 schema:alternateName The University of Texas at Austin
100 schema:name Dept. of Civil, Architectural and Environmental Engineering, The University of Texas, 78712, Austin, TX, USA
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...