Ontology type: schema:Chapter Open Access: True
2006
AUTHORSMaurizio Filippone , Francesco Masulli , Stefano Rovetta , Sushmita Mitra , Haider Banka
ABSTRACTThe important research objective of identifying genes with similar behavior with respect to different conditions has recently been tackled with biclustering techniques. In this paper we introduce a new approach to the biclustering problem using the Possibilistic Clustering paradigm. The proposed Possibilistic Biclustering algorithm finds one bicluster at a time, assigning a membership to the bicluster for each gene and for each condition. The biclustering problem, in which one would maximize the size of the bicluster and minimizing the residual, is faced as the optimization of a proper functional. We applied the algorithm to the Yeast database, obtaining fast convergence and good quality solutions. We discuss the effects of parameter tuning and the sensitivity of the method to parameter values. Comparisons with other methods from the literature are also presented. More... »
PAGES312-322
Computational Methods in Systems Biology
ISBN
978-3-540-46166-1
978-3-540-46167-8
http://scigraph.springernature.com/pub.10.1007/11885191_22
DOIhttp://dx.doi.org/10.1007/11885191_22
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1049908052
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "DISI, Dept. Computer and Information Sciences, University of Genova and CNISM, 16146, Genova, Italy",
"id": "http://www.grid.ac/institutes/grid.5606.5",
"name": [
"DISI, Dept. Computer and Information Sciences, University of Genova and CNISM, 16146, Genova, Italy"
],
"type": "Organization"
},
"familyName": "Filippone",
"givenName": "Maurizio",
"id": "sg:person.07706215665.03",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706215665.03"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "DISI, Dept. Computer and Information Sciences, University of Genova and CNISM, 16146, Genova, Italy",
"id": "http://www.grid.ac/institutes/grid.5606.5",
"name": [
"DISI, Dept. Computer and Information Sciences, University of Genova and CNISM, 16146, Genova, Italy"
],
"type": "Organization"
},
"familyName": "Masulli",
"givenName": "Francesco",
"id": "sg:person.013052261502.67",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013052261502.67"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "DISI, Dept. Computer and Information Sciences, University of Genova and CNISM, 16146, Genova, Italy",
"id": "http://www.grid.ac/institutes/grid.5606.5",
"name": [
"DISI, Dept. Computer and Information Sciences, University of Genova and CNISM, 16146, Genova, Italy"
],
"type": "Organization"
},
"familyName": "Rovetta",
"givenName": "Stefano",
"id": "sg:person.015767137221.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015767137221.48"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Machine Intelligence Unit, Indian Statistical Institute, 700108, Kolkata, India",
"id": "http://www.grid.ac/institutes/grid.39953.35",
"name": [
"Center for Soft Computing: A National Facility, Indian Statistical Institute, 700108, Kolkata, India",
"Machine Intelligence Unit, Indian Statistical Institute, 700108, Kolkata, India"
],
"type": "Organization"
},
"familyName": "Mitra",
"givenName": "Sushmita",
"id": "sg:person.011057576153.68",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011057576153.68"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Center for Soft Computing: A National Facility, Indian Statistical Institute, 700108, Kolkata, India",
"id": "http://www.grid.ac/institutes/grid.39953.35",
"name": [
"Center for Soft Computing: A National Facility, Indian Statistical Institute, 700108, Kolkata, India"
],
"type": "Organization"
},
"familyName": "Banka",
"givenName": "Haider",
"id": "sg:person.015663125211.91",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015663125211.91"
],
"type": "Person"
}
],
"datePublished": "2006",
"datePublishedReg": "2006-01-01",
"description": "The important research objective of identifying genes with similar behavior with respect to different conditions has recently been tackled with biclustering techniques. In this paper we introduce a new approach to the biclustering problem using the Possibilistic Clustering paradigm. The proposed Possibilistic Biclustering algorithm finds one bicluster at a time, assigning a membership to the bicluster for each gene and for each condition. The biclustering problem, in which one would maximize the size of the bicluster and minimizing the residual, is faced as the optimization of a proper functional. We applied the algorithm to the Yeast database, obtaining fast convergence and good quality solutions. We discuss the effects of parameter tuning and the sensitivity of the method to parameter values. Comparisons with other methods from the literature are also presented.",
"editor": [
{
"familyName": "Priami",
"givenName": "Corrado",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/11885191_22",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-540-46166-1",
"978-3-540-46167-8"
],
"name": "Computational Methods in Systems Biology",
"type": "Book"
},
"keywords": [
"tuning",
"applications",
"yeast database",
"fast convergence",
"different conditions",
"new approach",
"size",
"good quality solutions",
"algorithm",
"sensitivity",
"method",
"technique",
"solution",
"microarray data analysis",
"proper functionals",
"quality solutions",
"optimization",
"possibilistic approach",
"parameter tuning",
"paper",
"approach",
"genes",
"possibilistic biclustering algorithm",
"clustering paradigm",
"conditions",
"similar behavior",
"problem",
"paradigm",
"biclusters",
"functionals",
"time",
"convergence",
"important research objective",
"data analysis",
"biclustering algorithm",
"respect",
"comparison",
"effect",
"biclustering",
"behavior",
"analysis",
"values",
"research objective",
"objective",
"literature",
"membership",
"database"
],
"name": "Possibilistic Approach to Biclustering: An Application to Oligonucleotide Microarray Data Analysis",
"pagination": "312-322",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1049908052"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/11885191_22"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/11885191_22",
"https://app.dimensions.ai/details/publication/pub.1049908052"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:45",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_301.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/11885191_22"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11885191_22'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11885191_22'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11885191_22'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11885191_22'
This table displays all metadata directly associated to this object as RDF triples.
140 TRIPLES
23 PREDICATES
73 URIs
66 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/11885191_22 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | schema:author | Nfb9402656afe4592ac5785753f227e3c |
4 | ″ | schema:datePublished | 2006 |
5 | ″ | schema:datePublishedReg | 2006-01-01 |
6 | ″ | schema:description | The important research objective of identifying genes with similar behavior with respect to different conditions has recently been tackled with biclustering techniques. In this paper we introduce a new approach to the biclustering problem using the Possibilistic Clustering paradigm. The proposed Possibilistic Biclustering algorithm finds one bicluster at a time, assigning a membership to the bicluster for each gene and for each condition. The biclustering problem, in which one would maximize the size of the bicluster and minimizing the residual, is faced as the optimization of a proper functional. We applied the algorithm to the Yeast database, obtaining fast convergence and good quality solutions. We discuss the effects of parameter tuning and the sensitivity of the method to parameter values. Comparisons with other methods from the literature are also presented. |
7 | ″ | schema:editor | N93976ea4924e444bae65f5e391c24dfc |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | Nd35a3ea666da4e9cb821ba2e8b8c890d |
12 | ″ | schema:keywords | algorithm |
13 | ″ | ″ | analysis |
14 | ″ | ″ | applications |
15 | ″ | ″ | approach |
16 | ″ | ″ | behavior |
17 | ″ | ″ | biclustering |
18 | ″ | ″ | biclustering algorithm |
19 | ″ | ″ | biclusters |
20 | ″ | ″ | clustering paradigm |
21 | ″ | ″ | comparison |
22 | ″ | ″ | conditions |
23 | ″ | ″ | convergence |
24 | ″ | ″ | data analysis |
25 | ″ | ″ | database |
26 | ″ | ″ | different conditions |
27 | ″ | ″ | effect |
28 | ″ | ″ | fast convergence |
29 | ″ | ″ | functionals |
30 | ″ | ″ | genes |
31 | ″ | ″ | good quality solutions |
32 | ″ | ″ | important research objective |
33 | ″ | ″ | literature |
34 | ″ | ″ | membership |
35 | ″ | ″ | method |
36 | ″ | ″ | microarray data analysis |
37 | ″ | ″ | new approach |
38 | ″ | ″ | objective |
39 | ″ | ″ | optimization |
40 | ″ | ″ | paper |
41 | ″ | ″ | paradigm |
42 | ″ | ″ | parameter tuning |
43 | ″ | ″ | possibilistic approach |
44 | ″ | ″ | possibilistic biclustering algorithm |
45 | ″ | ″ | problem |
46 | ″ | ″ | proper functionals |
47 | ″ | ″ | quality solutions |
48 | ″ | ″ | research objective |
49 | ″ | ″ | respect |
50 | ″ | ″ | sensitivity |
51 | ″ | ″ | similar behavior |
52 | ″ | ″ | size |
53 | ″ | ″ | solution |
54 | ″ | ″ | technique |
55 | ″ | ″ | time |
56 | ″ | ″ | tuning |
57 | ″ | ″ | values |
58 | ″ | ″ | yeast database |
59 | ″ | schema:name | Possibilistic Approach to Biclustering: An Application to Oligonucleotide Microarray Data Analysis |
60 | ″ | schema:pagination | 312-322 |
61 | ″ | schema:productId | Nad498766a7fc4e6ebde9ca3c4937cb49 |
62 | ″ | ″ | Nf834d831b2ae42b0b7d35d20223b5c5e |
63 | ″ | schema:publisher | N88ceff4f8db9400b97a85609ab9e3810 |
64 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1049908052 |
65 | ″ | ″ | https://doi.org/10.1007/11885191_22 |
66 | ″ | schema:sdDatePublished | 2022-05-20T07:45 |
67 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
68 | ″ | schema:sdPublisher | N1b9ff463ce164872ad030c1c7a28ac6e |
69 | ″ | schema:url | https://doi.org/10.1007/11885191_22 |
70 | ″ | sgo:license | sg:explorer/license/ |
71 | ″ | sgo:sdDataset | chapters |
72 | ″ | rdf:type | schema:Chapter |
73 | N1280e0b1f62d4b8abb90b4cb42bbf415 | rdf:first | sg:person.015663125211.91 |
74 | ″ | rdf:rest | rdf:nil |
75 | N166ecfdafca54a56950c3f27bc37adbe | rdf:first | sg:person.015767137221.48 |
76 | ″ | rdf:rest | Nac4f576848934b8e8190d21b2fc5aaad |
77 | N1b9ff463ce164872ad030c1c7a28ac6e | schema:name | Springer Nature - SN SciGraph project |
78 | ″ | rdf:type | schema:Organization |
79 | N69c1752624234f9491a93243253d4cb9 | rdf:first | sg:person.013052261502.67 |
80 | ″ | rdf:rest | N166ecfdafca54a56950c3f27bc37adbe |
81 | N88ceff4f8db9400b97a85609ab9e3810 | schema:name | Springer Nature |
82 | ″ | rdf:type | schema:Organisation |
83 | N93976ea4924e444bae65f5e391c24dfc | rdf:first | Ne61930b717654bd0918eff753d7f0c5b |
84 | ″ | rdf:rest | rdf:nil |
85 | Nac4f576848934b8e8190d21b2fc5aaad | rdf:first | sg:person.011057576153.68 |
86 | ″ | rdf:rest | N1280e0b1f62d4b8abb90b4cb42bbf415 |
87 | Nad498766a7fc4e6ebde9ca3c4937cb49 | schema:name | dimensions_id |
88 | ″ | schema:value | pub.1049908052 |
89 | ″ | rdf:type | schema:PropertyValue |
90 | Nd35a3ea666da4e9cb821ba2e8b8c890d | schema:isbn | 978-3-540-46166-1 |
91 | ″ | ″ | 978-3-540-46167-8 |
92 | ″ | schema:name | Computational Methods in Systems Biology |
93 | ″ | rdf:type | schema:Book |
94 | Ne61930b717654bd0918eff753d7f0c5b | schema:familyName | Priami |
95 | ″ | schema:givenName | Corrado |
96 | ″ | rdf:type | schema:Person |
97 | Nf834d831b2ae42b0b7d35d20223b5c5e | schema:name | doi |
98 | ″ | schema:value | 10.1007/11885191_22 |
99 | ″ | rdf:type | schema:PropertyValue |
100 | Nfb9402656afe4592ac5785753f227e3c | rdf:first | sg:person.07706215665.03 |
101 | ″ | rdf:rest | N69c1752624234f9491a93243253d4cb9 |
102 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
103 | ″ | schema:name | Information and Computing Sciences |
104 | ″ | rdf:type | schema:DefinedTerm |
105 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
106 | ″ | schema:name | Artificial Intelligence and Image Processing |
107 | ″ | rdf:type | schema:DefinedTerm |
108 | sg:person.011057576153.68 | schema:affiliation | grid-institutes:grid.39953.35 |
109 | ″ | schema:familyName | Mitra |
110 | ″ | schema:givenName | Sushmita |
111 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011057576153.68 |
112 | ″ | rdf:type | schema:Person |
113 | sg:person.013052261502.67 | schema:affiliation | grid-institutes:grid.5606.5 |
114 | ″ | schema:familyName | Masulli |
115 | ″ | schema:givenName | Francesco |
116 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013052261502.67 |
117 | ″ | rdf:type | schema:Person |
118 | sg:person.015663125211.91 | schema:affiliation | grid-institutes:grid.39953.35 |
119 | ″ | schema:familyName | Banka |
120 | ″ | schema:givenName | Haider |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015663125211.91 |
122 | ″ | rdf:type | schema:Person |
123 | sg:person.015767137221.48 | schema:affiliation | grid-institutes:grid.5606.5 |
124 | ″ | schema:familyName | Rovetta |
125 | ″ | schema:givenName | Stefano |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015767137221.48 |
127 | ″ | rdf:type | schema:Person |
128 | sg:person.07706215665.03 | schema:affiliation | grid-institutes:grid.5606.5 |
129 | ″ | schema:familyName | Filippone |
130 | ″ | schema:givenName | Maurizio |
131 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706215665.03 |
132 | ″ | rdf:type | schema:Person |
133 | grid-institutes:grid.39953.35 | schema:alternateName | Center for Soft Computing: A National Facility, Indian Statistical Institute, 700108, Kolkata, India |
134 | ″ | ″ | Machine Intelligence Unit, Indian Statistical Institute, 700108, Kolkata, India |
135 | ″ | schema:name | Center for Soft Computing: A National Facility, Indian Statistical Institute, 700108, Kolkata, India |
136 | ″ | ″ | Machine Intelligence Unit, Indian Statistical Institute, 700108, Kolkata, India |
137 | ″ | rdf:type | schema:Organization |
138 | grid-institutes:grid.5606.5 | schema:alternateName | DISI, Dept. Computer and Information Sciences, University of Genova and CNISM, 16146, Genova, Italy |
139 | ″ | schema:name | DISI, Dept. Computer and Information Sciences, University of Genova and CNISM, 16146, Genova, Italy |
140 | ″ | rdf:type | schema:Organization |