Possibilistic Approach to Biclustering: An Application to Oligonucleotide Microarray Data Analysis View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2006

AUTHORS

Maurizio Filippone , Francesco Masulli , Stefano Rovetta , Sushmita Mitra , Haider Banka

ABSTRACT

The important research objective of identifying genes with similar behavior with respect to different conditions has recently been tackled with biclustering techniques. In this paper we introduce a new approach to the biclustering problem using the Possibilistic Clustering paradigm. The proposed Possibilistic Biclustering algorithm finds one bicluster at a time, assigning a membership to the bicluster for each gene and for each condition. The biclustering problem, in which one would maximize the size of the bicluster and minimizing the residual, is faced as the optimization of a proper functional. We applied the algorithm to the Yeast database, obtaining fast convergence and good quality solutions. We discuss the effects of parameter tuning and the sensitivity of the method to parameter values. Comparisons with other methods from the literature are also presented. More... »

PAGES

312-322

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11885191_22

DOI

http://dx.doi.org/10.1007/11885191_22

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049908052


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "DISI, Dept. Computer and Information Sciences, University of Genova and CNISM, 16146, Genova, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5606.5", 
          "name": [
            "DISI, Dept. Computer and Information Sciences, University of Genova and CNISM, 16146, Genova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Filippone", 
        "givenName": "Maurizio", 
        "id": "sg:person.07706215665.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706215665.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DISI, Dept. Computer and Information Sciences, University of Genova and CNISM, 16146, Genova, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5606.5", 
          "name": [
            "DISI, Dept. Computer and Information Sciences, University of Genova and CNISM, 16146, Genova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Masulli", 
        "givenName": "Francesco", 
        "id": "sg:person.013052261502.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013052261502.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DISI, Dept. Computer and Information Sciences, University of Genova and CNISM, 16146, Genova, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5606.5", 
          "name": [
            "DISI, Dept. Computer and Information Sciences, University of Genova and CNISM, 16146, Genova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rovetta", 
        "givenName": "Stefano", 
        "id": "sg:person.015767137221.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015767137221.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Machine Intelligence Unit, Indian Statistical Institute, 700108, Kolkata, India", 
          "id": "http://www.grid.ac/institutes/grid.39953.35", 
          "name": [
            "Center for Soft Computing: A National Facility, Indian Statistical Institute, 700108, Kolkata, India", 
            "Machine Intelligence Unit, Indian Statistical Institute, 700108, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mitra", 
        "givenName": "Sushmita", 
        "id": "sg:person.011057576153.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011057576153.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Soft Computing: A National Facility, Indian Statistical Institute, 700108, Kolkata, India", 
          "id": "http://www.grid.ac/institutes/grid.39953.35", 
          "name": [
            "Center for Soft Computing: A National Facility, Indian Statistical Institute, 700108, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Banka", 
        "givenName": "Haider", 
        "id": "sg:person.015663125211.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015663125211.91"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "The important research objective of identifying genes with similar behavior with respect to different conditions has recently been tackled with biclustering techniques. In this paper we introduce a new approach to the biclustering problem using the Possibilistic Clustering paradigm. The proposed Possibilistic Biclustering algorithm finds one bicluster at a time, assigning a membership to the bicluster for each gene and for each condition. The biclustering problem, in which one would maximize the size of the bicluster and minimizing the residual, is faced as the optimization of a proper functional. We applied the algorithm to the Yeast database, obtaining fast convergence and good quality solutions. We discuss the effects of parameter tuning and the sensitivity of the method to parameter values. Comparisons with other methods from the literature are also presented.", 
    "editor": [
      {
        "familyName": "Priami", 
        "givenName": "Corrado", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11885191_22", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-46166-1", 
        "978-3-540-46167-8"
      ], 
      "name": "Computational Methods in Systems Biology", 
      "type": "Book"
    }, 
    "keywords": [
      "tuning", 
      "applications", 
      "yeast database", 
      "fast convergence", 
      "different conditions", 
      "new approach", 
      "size", 
      "good quality solutions", 
      "algorithm", 
      "sensitivity", 
      "method", 
      "technique", 
      "solution", 
      "microarray data analysis", 
      "proper functionals", 
      "quality solutions", 
      "optimization", 
      "possibilistic approach", 
      "parameter tuning", 
      "paper", 
      "approach", 
      "genes", 
      "possibilistic biclustering algorithm", 
      "clustering paradigm", 
      "conditions", 
      "similar behavior", 
      "problem", 
      "paradigm", 
      "biclusters", 
      "functionals", 
      "time", 
      "convergence", 
      "important research objective", 
      "data analysis", 
      "biclustering algorithm", 
      "respect", 
      "comparison", 
      "effect", 
      "biclustering", 
      "behavior", 
      "analysis", 
      "values", 
      "research objective", 
      "objective", 
      "literature", 
      "membership", 
      "database"
    ], 
    "name": "Possibilistic Approach to Biclustering: An Application to Oligonucleotide Microarray Data Analysis", 
    "pagination": "312-322", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049908052"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11885191_22"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11885191_22", 
      "https://app.dimensions.ai/details/publication/pub.1049908052"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_301.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/11885191_22"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11885191_22'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11885191_22'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11885191_22'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11885191_22'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      23 PREDICATES      73 URIs      66 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11885191_22 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nfb9402656afe4592ac5785753f227e3c
4 schema:datePublished 2006
5 schema:datePublishedReg 2006-01-01
6 schema:description The important research objective of identifying genes with similar behavior with respect to different conditions has recently been tackled with biclustering techniques. In this paper we introduce a new approach to the biclustering problem using the Possibilistic Clustering paradigm. The proposed Possibilistic Biclustering algorithm finds one bicluster at a time, assigning a membership to the bicluster for each gene and for each condition. The biclustering problem, in which one would maximize the size of the bicluster and minimizing the residual, is faced as the optimization of a proper functional. We applied the algorithm to the Yeast database, obtaining fast convergence and good quality solutions. We discuss the effects of parameter tuning and the sensitivity of the method to parameter values. Comparisons with other methods from the literature are also presented.
7 schema:editor N93976ea4924e444bae65f5e391c24dfc
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Nd35a3ea666da4e9cb821ba2e8b8c890d
12 schema:keywords algorithm
13 analysis
14 applications
15 approach
16 behavior
17 biclustering
18 biclustering algorithm
19 biclusters
20 clustering paradigm
21 comparison
22 conditions
23 convergence
24 data analysis
25 database
26 different conditions
27 effect
28 fast convergence
29 functionals
30 genes
31 good quality solutions
32 important research objective
33 literature
34 membership
35 method
36 microarray data analysis
37 new approach
38 objective
39 optimization
40 paper
41 paradigm
42 parameter tuning
43 possibilistic approach
44 possibilistic biclustering algorithm
45 problem
46 proper functionals
47 quality solutions
48 research objective
49 respect
50 sensitivity
51 similar behavior
52 size
53 solution
54 technique
55 time
56 tuning
57 values
58 yeast database
59 schema:name Possibilistic Approach to Biclustering: An Application to Oligonucleotide Microarray Data Analysis
60 schema:pagination 312-322
61 schema:productId Nad498766a7fc4e6ebde9ca3c4937cb49
62 Nf834d831b2ae42b0b7d35d20223b5c5e
63 schema:publisher N88ceff4f8db9400b97a85609ab9e3810
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049908052
65 https://doi.org/10.1007/11885191_22
66 schema:sdDatePublished 2022-05-20T07:45
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N1b9ff463ce164872ad030c1c7a28ac6e
69 schema:url https://doi.org/10.1007/11885191_22
70 sgo:license sg:explorer/license/
71 sgo:sdDataset chapters
72 rdf:type schema:Chapter
73 N1280e0b1f62d4b8abb90b4cb42bbf415 rdf:first sg:person.015663125211.91
74 rdf:rest rdf:nil
75 N166ecfdafca54a56950c3f27bc37adbe rdf:first sg:person.015767137221.48
76 rdf:rest Nac4f576848934b8e8190d21b2fc5aaad
77 N1b9ff463ce164872ad030c1c7a28ac6e schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N69c1752624234f9491a93243253d4cb9 rdf:first sg:person.013052261502.67
80 rdf:rest N166ecfdafca54a56950c3f27bc37adbe
81 N88ceff4f8db9400b97a85609ab9e3810 schema:name Springer Nature
82 rdf:type schema:Organisation
83 N93976ea4924e444bae65f5e391c24dfc rdf:first Ne61930b717654bd0918eff753d7f0c5b
84 rdf:rest rdf:nil
85 Nac4f576848934b8e8190d21b2fc5aaad rdf:first sg:person.011057576153.68
86 rdf:rest N1280e0b1f62d4b8abb90b4cb42bbf415
87 Nad498766a7fc4e6ebde9ca3c4937cb49 schema:name dimensions_id
88 schema:value pub.1049908052
89 rdf:type schema:PropertyValue
90 Nd35a3ea666da4e9cb821ba2e8b8c890d schema:isbn 978-3-540-46166-1
91 978-3-540-46167-8
92 schema:name Computational Methods in Systems Biology
93 rdf:type schema:Book
94 Ne61930b717654bd0918eff753d7f0c5b schema:familyName Priami
95 schema:givenName Corrado
96 rdf:type schema:Person
97 Nf834d831b2ae42b0b7d35d20223b5c5e schema:name doi
98 schema:value 10.1007/11885191_22
99 rdf:type schema:PropertyValue
100 Nfb9402656afe4592ac5785753f227e3c rdf:first sg:person.07706215665.03
101 rdf:rest N69c1752624234f9491a93243253d4cb9
102 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
103 schema:name Information and Computing Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
106 schema:name Artificial Intelligence and Image Processing
107 rdf:type schema:DefinedTerm
108 sg:person.011057576153.68 schema:affiliation grid-institutes:grid.39953.35
109 schema:familyName Mitra
110 schema:givenName Sushmita
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011057576153.68
112 rdf:type schema:Person
113 sg:person.013052261502.67 schema:affiliation grid-institutes:grid.5606.5
114 schema:familyName Masulli
115 schema:givenName Francesco
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013052261502.67
117 rdf:type schema:Person
118 sg:person.015663125211.91 schema:affiliation grid-institutes:grid.39953.35
119 schema:familyName Banka
120 schema:givenName Haider
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015663125211.91
122 rdf:type schema:Person
123 sg:person.015767137221.48 schema:affiliation grid-institutes:grid.5606.5
124 schema:familyName Rovetta
125 schema:givenName Stefano
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015767137221.48
127 rdf:type schema:Person
128 sg:person.07706215665.03 schema:affiliation grid-institutes:grid.5606.5
129 schema:familyName Filippone
130 schema:givenName Maurizio
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706215665.03
132 rdf:type schema:Person
133 grid-institutes:grid.39953.35 schema:alternateName Center for Soft Computing: A National Facility, Indian Statistical Institute, 700108, Kolkata, India
134 Machine Intelligence Unit, Indian Statistical Institute, 700108, Kolkata, India
135 schema:name Center for Soft Computing: A National Facility, Indian Statistical Institute, 700108, Kolkata, India
136 Machine Intelligence Unit, Indian Statistical Institute, 700108, Kolkata, India
137 rdf:type schema:Organization
138 grid-institutes:grid.5606.5 schema:alternateName DISI, Dept. Computer and Information Sciences, University of Genova and CNISM, 16146, Genova, Italy
139 schema:name DISI, Dept. Computer and Information Sciences, University of Genova and CNISM, 16146, Genova, Italy
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...