Possibilistic Approach to Biclustering: An Application to Oligonucleotide Microarray Data Analysis View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2006

AUTHORS

Maurizio Filippone , Francesco Masulli , Stefano Rovetta , Sushmita Mitra , Haider Banka

ABSTRACT

The important research objective of identifying genes with similar behavior with respect to different conditions has recently been tackled with biclustering techniques. In this paper we introduce a new approach to the biclustering problem using the Possibilistic Clustering paradigm. The proposed Possibilistic Biclustering algorithm finds one bicluster at a time, assigning a membership to the bicluster for each gene and for each condition. The biclustering problem, in which one would maximize the size of the bicluster and minimizing the residual, is faced as the optimization of a proper functional. We applied the algorithm to the Yeast database, obtaining fast convergence and good quality solutions. We discuss the effects of parameter tuning and the sensitivity of the method to parameter values. Comparisons with other methods from the literature are also presented. More... »

PAGES

312-322

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11885191_22

DOI

http://dx.doi.org/10.1007/11885191_22

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049908052


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "DISI, Dept. Computer and Information Sciences, University of Genova and CNISM, 16146, Genova, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5606.5", 
          "name": [
            "DISI, Dept. Computer and Information Sciences, University of Genova and CNISM, 16146, Genova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Filippone", 
        "givenName": "Maurizio", 
        "id": "sg:person.07706215665.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706215665.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DISI, Dept. Computer and Information Sciences, University of Genova and CNISM, 16146, Genova, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5606.5", 
          "name": [
            "DISI, Dept. Computer and Information Sciences, University of Genova and CNISM, 16146, Genova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Masulli", 
        "givenName": "Francesco", 
        "id": "sg:person.013052261502.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013052261502.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DISI, Dept. Computer and Information Sciences, University of Genova and CNISM, 16146, Genova, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5606.5", 
          "name": [
            "DISI, Dept. Computer and Information Sciences, University of Genova and CNISM, 16146, Genova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rovetta", 
        "givenName": "Stefano", 
        "id": "sg:person.015767137221.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015767137221.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Machine Intelligence Unit, Indian Statistical Institute, 700108, Kolkata, India", 
          "id": "http://www.grid.ac/institutes/grid.39953.35", 
          "name": [
            "Center for Soft Computing: A National Facility, Indian Statistical Institute, 700108, Kolkata, India", 
            "Machine Intelligence Unit, Indian Statistical Institute, 700108, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mitra", 
        "givenName": "Sushmita", 
        "id": "sg:person.011057576153.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011057576153.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Soft Computing: A National Facility, Indian Statistical Institute, 700108, Kolkata, India", 
          "id": "http://www.grid.ac/institutes/grid.39953.35", 
          "name": [
            "Center for Soft Computing: A National Facility, Indian Statistical Institute, 700108, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Banka", 
        "givenName": "Haider", 
        "id": "sg:person.015663125211.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015663125211.91"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "The important research objective of identifying genes with similar behavior with respect to different conditions has recently been tackled with biclustering techniques. In this paper we introduce a new approach to the biclustering problem using the Possibilistic Clustering paradigm. The proposed Possibilistic Biclustering algorithm finds one bicluster at a time, assigning a membership to the bicluster for each gene and for each condition. The biclustering problem, in which one would maximize the size of the bicluster and minimizing the residual, is faced as the optimization of a proper functional. We applied the algorithm to the Yeast database, obtaining fast convergence and good quality solutions. We discuss the effects of parameter tuning and the sensitivity of the method to parameter values. Comparisons with other methods from the literature are also presented.", 
    "editor": [
      {
        "familyName": "Priami", 
        "givenName": "Corrado", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11885191_22", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-46166-1", 
        "978-3-540-46167-8"
      ], 
      "name": "Computational Methods in Systems Biology", 
      "type": "Book"
    }, 
    "keywords": [
      "good quality solutions", 
      "possibilistic clustering paradigm", 
      "clustering paradigm", 
      "possibilistic biclustering algorithm", 
      "quality solutions", 
      "biclustering algorithm", 
      "microarray data analysis", 
      "parameter tuning", 
      "possibilistic approach", 
      "biclusters", 
      "fast convergence", 
      "algorithm", 
      "new approach", 
      "yeast database", 
      "important research objective", 
      "data analysis", 
      "biclustering", 
      "research objectives", 
      "database", 
      "paradigm", 
      "optimization", 
      "applications", 
      "method", 
      "convergence", 
      "tuning", 
      "technique", 
      "solution", 
      "objective", 
      "time", 
      "membership", 
      "different conditions", 
      "similar behavior", 
      "respect", 
      "literature", 
      "size", 
      "behavior", 
      "comparison", 
      "analysis", 
      "proper functional", 
      "conditions", 
      "values", 
      "functionals", 
      "sensitivity", 
      "problem", 
      "effect", 
      "approach", 
      "genes", 
      "paper", 
      "Oligonucleotide Microarray Data Analysis"
    ], 
    "name": "Possibilistic Approach to Biclustering: An Application to Oligonucleotide Microarray Data Analysis", 
    "pagination": "312-322", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049908052"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11885191_22"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11885191_22", 
      "https://app.dimensions.ai/details/publication/pub.1049908052"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_121.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/11885191_22"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11885191_22'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11885191_22'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11885191_22'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11885191_22'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      23 PREDICATES      75 URIs      68 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11885191_22 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N127b2227e3924981b21c02d4c9a9fa22
4 schema:datePublished 2006
5 schema:datePublishedReg 2006-01-01
6 schema:description The important research objective of identifying genes with similar behavior with respect to different conditions has recently been tackled with biclustering techniques. In this paper we introduce a new approach to the biclustering problem using the Possibilistic Clustering paradigm. The proposed Possibilistic Biclustering algorithm finds one bicluster at a time, assigning a membership to the bicluster for each gene and for each condition. The biclustering problem, in which one would maximize the size of the bicluster and minimizing the residual, is faced as the optimization of a proper functional. We applied the algorithm to the Yeast database, obtaining fast convergence and good quality solutions. We discuss the effects of parameter tuning and the sensitivity of the method to parameter values. Comparisons with other methods from the literature are also presented.
7 schema:editor N0d7b9934c871454c8f565e259e917cdd
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Nbe51fe200e18435db55688ac5143ecc7
12 schema:keywords Oligonucleotide Microarray Data Analysis
13 algorithm
14 analysis
15 applications
16 approach
17 behavior
18 biclustering
19 biclustering algorithm
20 biclusters
21 clustering paradigm
22 comparison
23 conditions
24 convergence
25 data analysis
26 database
27 different conditions
28 effect
29 fast convergence
30 functionals
31 genes
32 good quality solutions
33 important research objective
34 literature
35 membership
36 method
37 microarray data analysis
38 new approach
39 objective
40 optimization
41 paper
42 paradigm
43 parameter tuning
44 possibilistic approach
45 possibilistic biclustering algorithm
46 possibilistic clustering paradigm
47 problem
48 proper functional
49 quality solutions
50 research objectives
51 respect
52 sensitivity
53 similar behavior
54 size
55 solution
56 technique
57 time
58 tuning
59 values
60 yeast database
61 schema:name Possibilistic Approach to Biclustering: An Application to Oligonucleotide Microarray Data Analysis
62 schema:pagination 312-322
63 schema:productId N2d42047137fc4a60ae88510c3cec4ea3
64 N99577b2e4db641efb319d453ccd31972
65 schema:publisher Nbba34840c45245cb99f5cb4e113f0b2f
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049908052
67 https://doi.org/10.1007/11885191_22
68 schema:sdDatePublished 2022-01-01T19:07
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N88b61ab6286b4734b05a25994a051212
71 schema:url https://doi.org/10.1007/11885191_22
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N0d7b9934c871454c8f565e259e917cdd rdf:first Nafb3e77a2b3a4759a7ee7209e92d9ee4
76 rdf:rest rdf:nil
77 N127b2227e3924981b21c02d4c9a9fa22 rdf:first sg:person.07706215665.03
78 rdf:rest N4130466d64994f1781aeae25a29f1d04
79 N2d42047137fc4a60ae88510c3cec4ea3 schema:name doi
80 schema:value 10.1007/11885191_22
81 rdf:type schema:PropertyValue
82 N4130466d64994f1781aeae25a29f1d04 rdf:first sg:person.013052261502.67
83 rdf:rest N6f6f07fd956e4bf2aa9c1c545ee813f3
84 N427eab28147845caa5397d04d03779fc rdf:first sg:person.011057576153.68
85 rdf:rest Nf7aea19a32b94a67b7a4fc469f258e83
86 N6f6f07fd956e4bf2aa9c1c545ee813f3 rdf:first sg:person.015767137221.48
87 rdf:rest N427eab28147845caa5397d04d03779fc
88 N88b61ab6286b4734b05a25994a051212 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N99577b2e4db641efb319d453ccd31972 schema:name dimensions_id
91 schema:value pub.1049908052
92 rdf:type schema:PropertyValue
93 Nafb3e77a2b3a4759a7ee7209e92d9ee4 schema:familyName Priami
94 schema:givenName Corrado
95 rdf:type schema:Person
96 Nbba34840c45245cb99f5cb4e113f0b2f schema:name Springer Nature
97 rdf:type schema:Organisation
98 Nbe51fe200e18435db55688ac5143ecc7 schema:isbn 978-3-540-46166-1
99 978-3-540-46167-8
100 schema:name Computational Methods in Systems Biology
101 rdf:type schema:Book
102 Nf7aea19a32b94a67b7a4fc469f258e83 rdf:first sg:person.015663125211.91
103 rdf:rest rdf:nil
104 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
105 schema:name Information and Computing Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
108 schema:name Artificial Intelligence and Image Processing
109 rdf:type schema:DefinedTerm
110 sg:person.011057576153.68 schema:affiliation grid-institutes:grid.39953.35
111 schema:familyName Mitra
112 schema:givenName Sushmita
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011057576153.68
114 rdf:type schema:Person
115 sg:person.013052261502.67 schema:affiliation grid-institutes:grid.5606.5
116 schema:familyName Masulli
117 schema:givenName Francesco
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013052261502.67
119 rdf:type schema:Person
120 sg:person.015663125211.91 schema:affiliation grid-institutes:grid.39953.35
121 schema:familyName Banka
122 schema:givenName Haider
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015663125211.91
124 rdf:type schema:Person
125 sg:person.015767137221.48 schema:affiliation grid-institutes:grid.5606.5
126 schema:familyName Rovetta
127 schema:givenName Stefano
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015767137221.48
129 rdf:type schema:Person
130 sg:person.07706215665.03 schema:affiliation grid-institutes:grid.5606.5
131 schema:familyName Filippone
132 schema:givenName Maurizio
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706215665.03
134 rdf:type schema:Person
135 grid-institutes:grid.39953.35 schema:alternateName Center for Soft Computing: A National Facility, Indian Statistical Institute, 700108, Kolkata, India
136 Machine Intelligence Unit, Indian Statistical Institute, 700108, Kolkata, India
137 schema:name Center for Soft Computing: A National Facility, Indian Statistical Institute, 700108, Kolkata, India
138 Machine Intelligence Unit, Indian Statistical Institute, 700108, Kolkata, India
139 rdf:type schema:Organization
140 grid-institutes:grid.5606.5 schema:alternateName DISI, Dept. Computer and Information Sciences, University of Genova and CNISM, 16146, Genova, Italy
141 schema:name DISI, Dept. Computer and Information Sciences, University of Genova and CNISM, 16146, Genova, Italy
142 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...