Clonal Selection Algorithm with Dynamic Population Size for Bimodal Search Spaces View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2006

AUTHORS

V. Cutello , D. Lee , S. Leone , G. Nicosia , M. Pavone

ABSTRACT

In this article an Immune Algorithm (IA) with dynamic population size is presented. Unlike previous IAs and Evolutionary Algorithms (EAs), in which the population dimension is constant during the evolutionary process, the population size is computed adaptively according to a cloning threshold. This not only enhances convergence speed but also gives more chance to escape from local minima. Extensive simulations are performed on trap functions and their performances are compared both quantitatively and statistically with other immune and evolutionary optmization methods. More... »

PAGES

949-958

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11881070_125

DOI

http://dx.doi.org/10.1007/11881070_125

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039712865


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Immunology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Computer Science, University of Catania, Viale A. Doria 6, 95125, Catania, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8158.4", 
          "name": [
            "Department of Mathematics and Computer Science, University of Catania, Viale A. Doria 6, 95125, Catania, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cutello", 
        "givenName": "V.", 
        "id": "sg:person.013504603243.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013504603243.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of BioSystems, KAIST, IBM-KAIST Bio-Computing Research Center, 373-1, Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.37172.30", 
          "name": [
            "Department of BioSystems, KAIST, IBM-KAIST Bio-Computing Research Center, 373-1, Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "D.", 
        "id": "sg:person.013015725720.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015725720.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Computer Science, University of Catania, Viale A. Doria 6, 95125, Catania, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8158.4", 
          "name": [
            "Department of Mathematics and Computer Science, University of Catania, Viale A. Doria 6, 95125, Catania, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leone", 
        "givenName": "S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Computer Science, University of Catania, Viale A. Doria 6, 95125, Catania, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8158.4", 
          "name": [
            "Department of Mathematics and Computer Science, University of Catania, Viale A. Doria 6, 95125, Catania, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nicosia", 
        "givenName": "G.", 
        "id": "sg:person.0742061443.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742061443.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of BioSystems, KAIST, IBM-KAIST Bio-Computing Research Center, 373-1, Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.37172.30", 
          "name": [
            "Department of Mathematics and Computer Science, University of Catania, Viale A. Doria 6, 95125, Catania, Italy", 
            "Department of BioSystems, KAIST, IBM-KAIST Bio-Computing Research Center, 373-1, Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pavone", 
        "givenName": "M.", 
        "id": "sg:person.07350620665.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07350620665.82"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "In this article an Immune Algorithm (IA) with dynamic population size is presented. Unlike previous IAs and Evolutionary Algorithms (EAs), in which the population dimension is constant during the evolutionary process, the population size is computed adaptively according to a cloning threshold. This not only enhances convergence speed but also gives more chance to escape from local minima. Extensive simulations are performed on trap functions and their performances are compared both quantitatively and statistically with other immune and evolutionary optmization methods.", 
    "editor": [
      {
        "familyName": "Jiao", 
        "givenName": "Licheng", 
        "type": "Person"
      }, 
      {
        "familyName": "Wang", 
        "givenName": "Lipo", 
        "type": "Person"
      }, 
      {
        "familyName": "Gao", 
        "givenName": "Xin-bo", 
        "type": "Person"
      }, 
      {
        "familyName": "Liu", 
        "givenName": "Jing", 
        "type": "Person"
      }, 
      {
        "familyName": "Wu", 
        "givenName": "Feng", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11881070_125", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-45901-9", 
        "978-3-540-45902-6"
      ], 
      "name": "Advances in Natural Computation", 
      "type": "Book"
    }, 
    "keywords": [
      "dynamic population size", 
      "immune algorithm", 
      "evolutionary algorithm", 
      "clonal selection algorithm", 
      "extensive simulations", 
      "selection algorithm", 
      "search space", 
      "convergence speed", 
      "algorithm", 
      "local minima", 
      "trap functions", 
      "more chances", 
      "evolutionary process", 
      "performance", 
      "simulations", 
      "speed", 
      "space", 
      "method", 
      "size", 
      "process", 
      "population dimension", 
      "dimensions", 
      "threshold", 
      "chance", 
      "article", 
      "population size", 
      "minimum", 
      "function", 
      "previous IAs", 
      "cloning threshold", 
      "evolutionary optmization methods", 
      "optmization methods", 
      "Bimodal Search Spaces"
    ], 
    "name": "Clonal Selection Algorithm with Dynamic Population Size for Bimodal Search Spaces", 
    "pagination": "949-958", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039712865"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11881070_125"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11881070_125", 
      "https://app.dimensions.ai/details/publication/pub.1039712865"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_250.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/11881070_125"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11881070_125'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11881070_125'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11881070_125'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11881070_125'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      23 PREDICATES      59 URIs      52 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11881070_125 schema:about anzsrc-for:11
2 anzsrc-for:1107
3 schema:author N0671515547124bdab8bb98c946c952ae
4 schema:datePublished 2006
5 schema:datePublishedReg 2006-01-01
6 schema:description In this article an Immune Algorithm (IA) with dynamic population size is presented. Unlike previous IAs and Evolutionary Algorithms (EAs), in which the population dimension is constant during the evolutionary process, the population size is computed adaptively according to a cloning threshold. This not only enhances convergence speed but also gives more chance to escape from local minima. Extensive simulations are performed on trap functions and their performances are compared both quantitatively and statistically with other immune and evolutionary optmization methods.
7 schema:editor N609f0690e5af49408eec92d72bc08cd3
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N9b56d3fd600043849faab8ac04b7618c
12 schema:keywords Bimodal Search Spaces
13 algorithm
14 article
15 chance
16 clonal selection algorithm
17 cloning threshold
18 convergence speed
19 dimensions
20 dynamic population size
21 evolutionary algorithm
22 evolutionary optmization methods
23 evolutionary process
24 extensive simulations
25 function
26 immune algorithm
27 local minima
28 method
29 minimum
30 more chances
31 optmization methods
32 performance
33 population dimension
34 population size
35 previous IAs
36 process
37 search space
38 selection algorithm
39 simulations
40 size
41 space
42 speed
43 threshold
44 trap functions
45 schema:name Clonal Selection Algorithm with Dynamic Population Size for Bimodal Search Spaces
46 schema:pagination 949-958
47 schema:productId N379a956e04694e028a7d0319023d26cc
48 N9a5e706d00b3454bb2465c21fff28184
49 schema:publisher Na513f778034647e5a48be98e9a939c7b
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039712865
51 https://doi.org/10.1007/11881070_125
52 schema:sdDatePublished 2022-01-01T19:14
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Ne7f69d05689e4b37bda3c9368362ec5a
55 schema:url https://doi.org/10.1007/11881070_125
56 sgo:license sg:explorer/license/
57 sgo:sdDataset chapters
58 rdf:type schema:Chapter
59 N0351efd5d33044daa6b21cfd9b6efe2f rdf:first sg:person.0742061443.97
60 rdf:rest Nf704327aece146dfb98ff2b4cba241b1
61 N0671515547124bdab8bb98c946c952ae rdf:first sg:person.013504603243.51
62 rdf:rest Nb2ca9e52ad77452dbf6fccfe6c2bd5bb
63 N379a956e04694e028a7d0319023d26cc schema:name dimensions_id
64 schema:value pub.1039712865
65 rdf:type schema:PropertyValue
66 N3b562195d9a84698a8e75127a687e570 schema:familyName Wu
67 schema:givenName Feng
68 rdf:type schema:Person
69 N42fa5a18d4514acdbac4320fcd75910e schema:familyName Liu
70 schema:givenName Jing
71 rdf:type schema:Person
72 N4abe46caaa5844e48f9b0ae607b59c12 rdf:first N3b562195d9a84698a8e75127a687e570
73 rdf:rest rdf:nil
74 N5ba8a2e8b2c7444a90f2d640cbe7ce44 schema:familyName Gao
75 schema:givenName Xin-bo
76 rdf:type schema:Person
77 N609f0690e5af49408eec92d72bc08cd3 rdf:first N9b2d8c2374594a4f806a22b05d2ef3ed
78 rdf:rest Nf492af8fbc214032b104af7df92d2e69
79 N74783beccda346099be14b7594c9acb7 rdf:first N42fa5a18d4514acdbac4320fcd75910e
80 rdf:rest N4abe46caaa5844e48f9b0ae607b59c12
81 N74e5b5425f55432d91b3e139ef41063e schema:affiliation grid-institutes:grid.8158.4
82 schema:familyName Leone
83 schema:givenName S.
84 rdf:type schema:Person
85 N9a5e706d00b3454bb2465c21fff28184 schema:name doi
86 schema:value 10.1007/11881070_125
87 rdf:type schema:PropertyValue
88 N9b2d8c2374594a4f806a22b05d2ef3ed schema:familyName Jiao
89 schema:givenName Licheng
90 rdf:type schema:Person
91 N9b56d3fd600043849faab8ac04b7618c schema:isbn 978-3-540-45901-9
92 978-3-540-45902-6
93 schema:name Advances in Natural Computation
94 rdf:type schema:Book
95 Na513f778034647e5a48be98e9a939c7b schema:name Springer Nature
96 rdf:type schema:Organisation
97 Nb038a7b0da284bc2bb4e8c3b8e92c18e rdf:first N74e5b5425f55432d91b3e139ef41063e
98 rdf:rest N0351efd5d33044daa6b21cfd9b6efe2f
99 Nb2ca9e52ad77452dbf6fccfe6c2bd5bb rdf:first sg:person.013015725720.15
100 rdf:rest Nb038a7b0da284bc2bb4e8c3b8e92c18e
101 Ne7e5c6fdb84d426e8f44d9ba772e9bbe schema:familyName Wang
102 schema:givenName Lipo
103 rdf:type schema:Person
104 Ne7f69d05689e4b37bda3c9368362ec5a schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 Nf492af8fbc214032b104af7df92d2e69 rdf:first Ne7e5c6fdb84d426e8f44d9ba772e9bbe
107 rdf:rest Nf4d4bf57862245b2ada710d56155c136
108 Nf4d4bf57862245b2ada710d56155c136 rdf:first N5ba8a2e8b2c7444a90f2d640cbe7ce44
109 rdf:rest N74783beccda346099be14b7594c9acb7
110 Nf704327aece146dfb98ff2b4cba241b1 rdf:first sg:person.07350620665.82
111 rdf:rest rdf:nil
112 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
113 schema:name Medical and Health Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
116 schema:name Immunology
117 rdf:type schema:DefinedTerm
118 sg:person.013015725720.15 schema:affiliation grid-institutes:grid.37172.30
119 schema:familyName Lee
120 schema:givenName D.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015725720.15
122 rdf:type schema:Person
123 sg:person.013504603243.51 schema:affiliation grid-institutes:grid.8158.4
124 schema:familyName Cutello
125 schema:givenName V.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013504603243.51
127 rdf:type schema:Person
128 sg:person.07350620665.82 schema:affiliation grid-institutes:grid.37172.30
129 schema:familyName Pavone
130 schema:givenName M.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07350620665.82
132 rdf:type schema:Person
133 sg:person.0742061443.97 schema:affiliation grid-institutes:grid.8158.4
134 schema:familyName Nicosia
135 schema:givenName G.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742061443.97
137 rdf:type schema:Person
138 grid-institutes:grid.37172.30 schema:alternateName Department of BioSystems, KAIST, IBM-KAIST Bio-Computing Research Center, 373-1, Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea
139 schema:name Department of BioSystems, KAIST, IBM-KAIST Bio-Computing Research Center, 373-1, Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea
140 Department of Mathematics and Computer Science, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
141 rdf:type schema:Organization
142 grid-institutes:grid.8158.4 schema:alternateName Department of Mathematics and Computer Science, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
143 schema:name Department of Mathematics and Computer Science, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...