Automated Object Extraction for Medical Image Retrieval Using the Insight Toolkit (ITK) View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2006

AUTHORS

Henning Müller , Joris Heuberger , Adrien Depeursinge , Antoine Geissbühler

ABSTRACT

Visual information retrieval is an emerging domain in the medical field as it has been in computer vision for more than ten years. It has the potential to help better managing the rising amount of visual medical data. One of the most frequent application fields for content–based medical image retrieval (CBIR) is diagnostic aid. By submitting an image showing a certain pathology to a CBIR system, the medical expert can easily find similar cases. A major problem is the background surrounding the object in many medical images. System parameters of the imaging modalities are stored around the images in text as well as patient name or a logo of the institution. With such noisy input data, image retrieval often rather finds images where the object appears in the same area and is surrounded by similar structures. Whereas in specialised application domains, segmentation can focus the research on a particular area, PACS–like (Picture Archiving and Communication System) databases containing a large variety of images need a more general approach. This article describes an algorithm to extract the important object of the image to reduce the amount of data to be analysed for CBIR and focuses analysis to the important object. Most current solutions index the entire image without making a difference between object and background when using varied PACS–like databases or radiology teaching files. Our requirement is to have a fully automatic algorithm for object extraction. Medical images have the advantage to normally have one particular object more or less in the centre of the image. The database used for evaluating this task is taken from a radiology teaching file called casimage and the retrieval component is an open source retrieval engine called medGIFT. More... »

PAGES

476-488

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11880592_36

DOI

http://dx.doi.org/10.1007/11880592_36

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050881215


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Medical Informatics, University and Hospitals of Geneva, Geneva, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.150338.c", 
          "name": [
            "Medical Informatics, University and Hospitals of Geneva, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00fcller", 
        "givenName": "Henning", 
        "id": "sg:person.07552063233.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07552063233.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical Informatics, University and Hospitals of Geneva, Geneva, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.150338.c", 
          "name": [
            "Medical Informatics, University and Hospitals of Geneva, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heuberger", 
        "givenName": "Joris", 
        "id": "sg:person.0577112016.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577112016.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical Informatics, University and Hospitals of Geneva, Geneva, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.150338.c", 
          "name": [
            "Medical Informatics, University and Hospitals of Geneva, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Depeursinge", 
        "givenName": "Adrien", 
        "id": "sg:person.01132575260.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132575260.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical Informatics, University and Hospitals of Geneva, Geneva, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.150338.c", 
          "name": [
            "Medical Informatics, University and Hospitals of Geneva, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Geissb\u00fchler", 
        "givenName": "Antoine", 
        "id": "sg:person.0600360343.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600360343.20"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "Visual information retrieval is an emerging domain in the medical field as it has been in computer vision for more than ten years. It has the potential to help better managing the rising amount of visual medical data. One of the most frequent application fields for content\u2013based medical image retrieval (CBIR) is diagnostic aid. By submitting an image showing a certain pathology to a CBIR system, the medical expert can easily find similar cases. A major problem is the background surrounding the object in many medical images. System parameters of the imaging modalities are stored around the images in text as well as patient name or a logo of the institution. With such noisy input data, image retrieval often rather finds images where the object appears in the same area and is surrounded by similar structures. Whereas in specialised application domains, segmentation can focus the research on a particular area, PACS\u2013like (Picture Archiving and Communication System) databases containing a large variety of images need a more general approach. This article describes an algorithm to extract the important object of the image to reduce the amount of data to be analysed for CBIR and focuses analysis to the important object. Most current solutions index the entire image without making a difference between object and background when using varied PACS\u2013like databases or radiology teaching files. Our requirement is to have a fully automatic algorithm for object extraction. Medical images have the advantage to normally have one particular object more or less in the centre of the image. The database used for evaluating this task is taken from a radiology teaching file called casimage and the retrieval component is an open source retrieval engine called medGIFT.", 
    "editor": [
      {
        "familyName": "Ng", 
        "givenName": "Hwee Tou", 
        "type": "Person"
      }, 
      {
        "familyName": "Leong", 
        "givenName": "Mun-Kew", 
        "type": "Person"
      }, 
      {
        "familyName": "Kan", 
        "givenName": "Min-Yen", 
        "type": "Person"
      }, 
      {
        "familyName": "Ji", 
        "givenName": "Donghong", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11880592_36", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-45780-0", 
        "978-3-540-46237-8"
      ], 
      "name": "Information Retrieval Technology", 
      "type": "Book"
    }, 
    "keywords": [
      "content-based medical image retrieval", 
      "medical image retrieval", 
      "image retrieval", 
      "object extraction", 
      "medical images", 
      "Insight Toolkit", 
      "teaching files", 
      "visual information retrieval", 
      "most current solutions", 
      "amount of data", 
      "noisy input data", 
      "radiology teaching files", 
      "CBIR system", 
      "computer vision", 
      "retrieval engine", 
      "information retrieval", 
      "application domains", 
      "important objects", 
      "entire image", 
      "current solutions", 
      "automatic algorithm", 
      "medical data", 
      "retrieval component", 
      "medical experts", 
      "retrieval", 
      "input data", 
      "application fields", 
      "particular object", 
      "objects", 
      "images", 
      "algorithm", 
      "medical field", 
      "files", 
      "MedGIFT", 
      "patient's name", 
      "system parameters", 
      "general approach", 
      "database", 
      "large variety", 
      "segmentation", 
      "toolkit", 
      "PACS", 
      "major problem", 
      "extraction", 
      "engine", 
      "task", 
      "domain", 
      "particular area", 
      "vision", 
      "requirements", 
      "logos", 
      "experts", 
      "text", 
      "data", 
      "system", 
      "advantages", 
      "imaging modalities", 
      "solution", 
      "field", 
      "certain pathologies", 
      "similar cases", 
      "amount", 
      "research", 
      "name", 
      "area", 
      "aid", 
      "background", 
      "variety", 
      "similar structure", 
      "components", 
      "same area", 
      "parameters", 
      "modalities", 
      "article", 
      "diagnostic aid", 
      "structure", 
      "analysis", 
      "center", 
      "cases", 
      "institutions", 
      "potential", 
      "years", 
      "differences", 
      "pathology", 
      "problem", 
      "approach", 
      "visual medical data", 
      "frequent application fields", 
      "such noisy input data", 
      "specialised application domains", 
      "varied PACS\u2013like databases", 
      "PACS\u2013like databases", 
      "casimage", 
      "open source retrieval engine", 
      "source retrieval engine"
    ], 
    "name": "Automated Object Extraction for Medical Image Retrieval Using the Insight Toolkit (ITK)", 
    "pagination": "476-488", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050881215"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11880592_36"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11880592_36", 
      "https://app.dimensions.ai/details/publication/pub.1050881215"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_288.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/11880592_36"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11880592_36'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11880592_36'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11880592_36'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11880592_36'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      23 PREDICATES      122 URIs      114 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11880592_36 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0806
4 schema:author Nf150580651c342fea539fa0404ccdf79
5 schema:datePublished 2006
6 schema:datePublishedReg 2006-01-01
7 schema:description Visual information retrieval is an emerging domain in the medical field as it has been in computer vision for more than ten years. It has the potential to help better managing the rising amount of visual medical data. One of the most frequent application fields for content–based medical image retrieval (CBIR) is diagnostic aid. By submitting an image showing a certain pathology to a CBIR system, the medical expert can easily find similar cases. A major problem is the background surrounding the object in many medical images. System parameters of the imaging modalities are stored around the images in text as well as patient name or a logo of the institution. With such noisy input data, image retrieval often rather finds images where the object appears in the same area and is surrounded by similar structures. Whereas in specialised application domains, segmentation can focus the research on a particular area, PACS–like (Picture Archiving and Communication System) databases containing a large variety of images need a more general approach. This article describes an algorithm to extract the important object of the image to reduce the amount of data to be analysed for CBIR and focuses analysis to the important object. Most current solutions index the entire image without making a difference between object and background when using varied PACS–like databases or radiology teaching files. Our requirement is to have a fully automatic algorithm for object extraction. Medical images have the advantage to normally have one particular object more or less in the centre of the image. The database used for evaluating this task is taken from a radiology teaching file called casimage and the retrieval component is an open source retrieval engine called medGIFT.
8 schema:editor N3290460b6c1140f7a055ac6f5d3fb05c
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Neb9fa7c5fd4d45e7b495f76a62f38f7a
13 schema:keywords CBIR system
14 Insight Toolkit
15 MedGIFT
16 PACS
17 PACS–like databases
18 advantages
19 aid
20 algorithm
21 amount
22 amount of data
23 analysis
24 application domains
25 application fields
26 approach
27 area
28 article
29 automatic algorithm
30 background
31 cases
32 casimage
33 center
34 certain pathologies
35 components
36 computer vision
37 content-based medical image retrieval
38 current solutions
39 data
40 database
41 diagnostic aid
42 differences
43 domain
44 engine
45 entire image
46 experts
47 extraction
48 field
49 files
50 frequent application fields
51 general approach
52 image retrieval
53 images
54 imaging modalities
55 important objects
56 information retrieval
57 input data
58 institutions
59 large variety
60 logos
61 major problem
62 medical data
63 medical experts
64 medical field
65 medical image retrieval
66 medical images
67 modalities
68 most current solutions
69 name
70 noisy input data
71 object extraction
72 objects
73 open source retrieval engine
74 parameters
75 particular area
76 particular object
77 pathology
78 patient's name
79 potential
80 problem
81 radiology teaching files
82 requirements
83 research
84 retrieval
85 retrieval component
86 retrieval engine
87 same area
88 segmentation
89 similar cases
90 similar structure
91 solution
92 source retrieval engine
93 specialised application domains
94 structure
95 such noisy input data
96 system
97 system parameters
98 task
99 teaching files
100 text
101 toolkit
102 varied PACS–like databases
103 variety
104 vision
105 visual information retrieval
106 visual medical data
107 years
108 schema:name Automated Object Extraction for Medical Image Retrieval Using the Insight Toolkit (ITK)
109 schema:pagination 476-488
110 schema:productId N17443f61a2aa441096959967a4d2210b
111 N1b2086e70c6a4e5d897270a6533aca2f
112 schema:publisher Nfdd63998ca094f6e88c451dc447b9742
113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050881215
114 https://doi.org/10.1007/11880592_36
115 schema:sdDatePublished 2021-11-01T18:54
116 schema:sdLicense https://scigraph.springernature.com/explorer/license/
117 schema:sdPublisher Ne0823267fb8e4bc0b5f384b4d5fdfc07
118 schema:url https://doi.org/10.1007/11880592_36
119 sgo:license sg:explorer/license/
120 sgo:sdDataset chapters
121 rdf:type schema:Chapter
122 N17443f61a2aa441096959967a4d2210b schema:name dimensions_id
123 schema:value pub.1050881215
124 rdf:type schema:PropertyValue
125 N1a23ddad023449e0ae3a4b8e008d63d2 schema:familyName Ng
126 schema:givenName Hwee Tou
127 rdf:type schema:Person
128 N1b2086e70c6a4e5d897270a6533aca2f schema:name doi
129 schema:value 10.1007/11880592_36
130 rdf:type schema:PropertyValue
131 N1d8e3785e414423cbbe8b7ca676529cb schema:familyName Leong
132 schema:givenName Mun-Kew
133 rdf:type schema:Person
134 N27a581fb03e14df5a4ed27b4b0e9ed5f rdf:first N99341b22fd284b5a8e500f287146bb8c
135 rdf:rest N90a3cf3f5e644d44b4651489285d0af3
136 N289080fc826645d3810d9ea6e8c20ad9 rdf:first sg:person.0600360343.20
137 rdf:rest rdf:nil
138 N3290460b6c1140f7a055ac6f5d3fb05c rdf:first N1a23ddad023449e0ae3a4b8e008d63d2
139 rdf:rest N57bdda8c25484f4dbc8f605d1221c18b
140 N57bdda8c25484f4dbc8f605d1221c18b rdf:first N1d8e3785e414423cbbe8b7ca676529cb
141 rdf:rest N27a581fb03e14df5a4ed27b4b0e9ed5f
142 N90a3cf3f5e644d44b4651489285d0af3 rdf:first Nbaf15e44080940fba51a0dccbad9d4ac
143 rdf:rest rdf:nil
144 N99341b22fd284b5a8e500f287146bb8c schema:familyName Kan
145 schema:givenName Min-Yen
146 rdf:type schema:Person
147 Nb39aac718ccb4269a8f8cb77753fa5db rdf:first sg:person.01132575260.26
148 rdf:rest N289080fc826645d3810d9ea6e8c20ad9
149 Nbaf15e44080940fba51a0dccbad9d4ac schema:familyName Ji
150 schema:givenName Donghong
151 rdf:type schema:Person
152 Ne0823267fb8e4bc0b5f384b4d5fdfc07 schema:name Springer Nature - SN SciGraph project
153 rdf:type schema:Organization
154 Ne47292c202c14f60b82cb2fe184d3f5f rdf:first sg:person.0577112016.65
155 rdf:rest Nb39aac718ccb4269a8f8cb77753fa5db
156 Neb9fa7c5fd4d45e7b495f76a62f38f7a schema:isbn 978-3-540-45780-0
157 978-3-540-46237-8
158 schema:name Information Retrieval Technology
159 rdf:type schema:Book
160 Nf150580651c342fea539fa0404ccdf79 rdf:first sg:person.07552063233.67
161 rdf:rest Ne47292c202c14f60b82cb2fe184d3f5f
162 Nfdd63998ca094f6e88c451dc447b9742 schema:name Springer Nature
163 rdf:type schema:Organisation
164 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
165 schema:name Information and Computing Sciences
166 rdf:type schema:DefinedTerm
167 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
168 schema:name Artificial Intelligence and Image Processing
169 rdf:type schema:DefinedTerm
170 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
171 schema:name Information Systems
172 rdf:type schema:DefinedTerm
173 sg:person.01132575260.26 schema:affiliation grid-institutes:grid.150338.c
174 schema:familyName Depeursinge
175 schema:givenName Adrien
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132575260.26
177 rdf:type schema:Person
178 sg:person.0577112016.65 schema:affiliation grid-institutes:grid.150338.c
179 schema:familyName Heuberger
180 schema:givenName Joris
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577112016.65
182 rdf:type schema:Person
183 sg:person.0600360343.20 schema:affiliation grid-institutes:grid.150338.c
184 schema:familyName Geissbühler
185 schema:givenName Antoine
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600360343.20
187 rdf:type schema:Person
188 sg:person.07552063233.67 schema:affiliation grid-institutes:grid.150338.c
189 schema:familyName Müller
190 schema:givenName Henning
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07552063233.67
192 rdf:type schema:Person
193 grid-institutes:grid.150338.c schema:alternateName Medical Informatics, University and Hospitals of Geneva, Geneva, Switzerland
194 schema:name Medical Informatics, University and Hospitals of Geneva, Geneva, Switzerland
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...