Simultaneous Stereoscope Localization and Soft-Tissue Mapping for Minimal Invasive Surgery View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2006

AUTHORS

Peter Mountney , Danail Stoyanov , Andrew Davison , Guang-Zhong Yang

ABSTRACT

Minimally Invasive Surgery (MIS) has recognized benefits of reduced patient trauma and recovery time. In practice, MIS procedures present a number of challenges due to the loss of 3D vision and the narrow field-of-view provided by the camera. The restricted vision can make navigation and localization within the human body a challenging task. This paper presents a robust technique for building a repeatable long term 3D map of the scene whilst recovering the camera movement based on Simultaneous Localization and Mapping (SLAM). A sequential vision only approach is adopted which provides 6 DOF camera movement that exploits the available textured surfaces and reduces reliance on strong planar structures required for range finders. The method has been validated with a simulated data set using real MIS textures, as well as in vivo MIS video sequences. The results indicate the strength of the proposed algorithm under the complex reflectance properties of the scene, and the potential for real-time application for integrating with the existing MIS hardware. More... »

PAGES

347-354

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11866565_43

DOI

http://dx.doi.org/10.1007/11866565_43

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043534590

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17354909


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Connective Tissue", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Laparoscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Minimally Invasive Surgical Procedures", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surgery, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "User-Computer Interface", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Royal Society/Wolfson Foundation Medical Image Computing Laboratory"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mountney", 
        "givenName": "Peter", 
        "id": "sg:person.0702376130.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702376130.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Royal Society/Wolfson Foundation Medical Image Computing Laboratory"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stoyanov", 
        "givenName": "Danail", 
        "id": "sg:person.01131663065.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131663065.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Royal Society/Wolfson Foundation Medical Image Computing Laboratory"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davison", 
        "givenName": "Andrew", 
        "id": "sg:person.012373424637.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012373424637.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Royal Society/Wolfson Foundation Medical Image Computing Laboratory", 
            "Department of Surgical Oncology and Technology, Imperial College, SW7 2BZ, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Guang-Zhong", 
        "id": "sg:person.01324214223.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324214223.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.media.2005.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004437022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2005.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004437022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45468-3_38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007684212", 
          "https://doi.org/10.1007/3-540-45468-3_38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45468-3_38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007684212", 
          "https://doi.org/10.1007/3-540-45468-3_38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.380037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014494483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30136-3_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047291475", 
          "https://doi.org/10.1007/978-3-540-30136-3_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30136-3_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047291475", 
          "https://doi.org/10.1007/978-3-540-30136-3_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.1985.1087373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086236350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2003.1238654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093273911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.1994.323794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093488775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093910153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093910153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.2005.1545433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094387384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.2005.1545087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094810424"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "Minimally Invasive Surgery (MIS) has recognized benefits of reduced patient trauma and recovery time. In practice, MIS procedures present a number of challenges due to the loss of 3D vision and the narrow field-of-view provided by the camera. The restricted vision can make navigation and localization within the human body a challenging task. This paper presents a robust technique for building a repeatable long term 3D map of the scene whilst recovering the camera movement based on Simultaneous Localization and Mapping (SLAM). A sequential vision only approach is adopted which provides 6 DOF camera movement that exploits the available textured surfaces and reduces reliance on strong planar structures required for range finders. The method has been validated with a simulated data set using real MIS textures, as well as in vivo MIS video sequences. The results indicate the strength of the proposed algorithm under the complex reflectance properties of the scene, and the potential for real-time application for integrating with the existing MIS hardware.", 
    "editor": [
      {
        "familyName": "Larsen", 
        "givenName": "Rasmus", 
        "type": "Person"
      }, 
      {
        "familyName": "Nielsen", 
        "givenName": "Mads", 
        "type": "Person"
      }, 
      {
        "familyName": "Sporring", 
        "givenName": "Jon", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11866565_43", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-44707-8", 
        "978-3-540-44708-5"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2006", 
      "type": "Book"
    }, 
    "name": "Simultaneous Stereoscope Localization and Soft-Tissue Mapping for Minimal Invasive Surgery", 
    "pagination": "347-354", 
    "productId": [
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17354909"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043534590"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11866565_43"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cf5f22d14f3759db3a1c6f73ff96d1fea6569f18596e104e8ed24559a4ce46d7"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11866565_43", 
      "https://app.dimensions.ai/details/publication/pub.1043534590"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57904_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F11866565_43"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11866565_43'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11866565_43'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11866565_43'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11866565_43'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      23 PREDICATES      52 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11866565_43 schema:about N0681141e3b1841f98d0f036ec142f3db
2 N0ef6cc098ad141b089b1952079cf69d9
3 N3ed2b705e4c24ecc8ae31d7f5b052fd0
4 N42b5322bb52e4e01a0702083dcf84c2f
5 N480aeb9e89404b3c9e1df1a897a711e7
6 N67358caa76454e88969b8d7233f3cde2
7 N7bf8c013a53e44be9cadcf2ad9ae335d
8 N96b5e94f944044b482611a10778f351a
9 N9ee9e5ef80d74826af81e5db4a7f336d
10 Na4257ce9297748f39ac04ada978c173c
11 Na648b3c6eee5412f8ab2439e9a67f2c2
12 Nae27c16d88314e759282595156c69a8b
13 Ncea8705ce3194e7a8a14d623f5226229
14 Ne2649adf98094724be09451453d8a310
15 anzsrc-for:08
16 anzsrc-for:0801
17 schema:author N84683b09d3dc4b1482148dbfbcffde47
18 schema:citation sg:pub.10.1007/3-540-45468-3_38
19 sg:pub.10.1007/978-3-540-30136-3_6
20 https://doi.org/10.1016/j.media.2005.05.005
21 https://doi.org/10.1109/cvpr.1994.323794
22 https://doi.org/10.1109/cvpr.2005.477
23 https://doi.org/10.1109/iccv.2003.1238654
24 https://doi.org/10.1109/iros.2005.1545087
25 https://doi.org/10.1109/iros.2005.1545433
26 https://doi.org/10.1109/robot.1985.1087373
27 https://doi.org/10.1117/12.380037
28 schema:datePublished 2006
29 schema:datePublishedReg 2006-01-01
30 schema:description Minimally Invasive Surgery (MIS) has recognized benefits of reduced patient trauma and recovery time. In practice, MIS procedures present a number of challenges due to the loss of 3D vision and the narrow field-of-view provided by the camera. The restricted vision can make navigation and localization within the human body a challenging task. This paper presents a robust technique for building a repeatable long term 3D map of the scene whilst recovering the camera movement based on Simultaneous Localization and Mapping (SLAM). A sequential vision only approach is adopted which provides 6 DOF camera movement that exploits the available textured surfaces and reduces reliance on strong planar structures required for range finders. The method has been validated with a simulated data set using real MIS textures, as well as in vivo MIS video sequences. The results indicate the strength of the proposed algorithm under the complex reflectance properties of the scene, and the potential for real-time application for integrating with the existing MIS hardware.
31 schema:editor N34e663823cc9451d84c2d08c244d896a
32 schema:genre chapter
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N518b4eae4487445d8a2613d4795d63b5
36 schema:name Simultaneous Stereoscope Localization and Soft-Tissue Mapping for Minimal Invasive Surgery
37 schema:pagination 347-354
38 schema:productId N2e83b7cfc12345248a907eadc02572c3
39 N70a4083e95b34420b2aa0765432b4d16
40 Nde4000311b4b4b4abc7e3928edaec1e4
41 Nf90b23bcf9ba4468b2bec0e7fd3471f2
42 schema:publisher N668b0f508e524497a6850b2facaf06bd
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043534590
44 https://doi.org/10.1007/11866565_43
45 schema:sdDatePublished 2019-04-16T07:32
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N097694380ad049d4ba4f5f37c1b87710
48 schema:url https://link.springer.com/10.1007%2F11866565_43
49 sgo:license sg:explorer/license/
50 sgo:sdDataset chapters
51 rdf:type schema:Chapter
52 N0681141e3b1841f98d0f036ec142f3db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
53 schema:name Reproducibility of Results
54 rdf:type schema:DefinedTerm
55 N097694380ad049d4ba4f5f37c1b87710 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N0ef6cc098ad141b089b1952079cf69d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Connective Tissue
59 rdf:type schema:DefinedTerm
60 N21b02604048b432c8f975975606b0002 schema:name Royal Society/Wolfson Foundation Medical Image Computing Laboratory
61 rdf:type schema:Organization
62 N2e83b7cfc12345248a907eadc02572c3 schema:name doi
63 schema:value 10.1007/11866565_43
64 rdf:type schema:PropertyValue
65 N311933bc2c764ad6bc1e799ad389bf87 schema:familyName Sporring
66 schema:givenName Jon
67 rdf:type schema:Person
68 N349e727c98944eda9cc63bf0fcdcad5e schema:name Royal Society/Wolfson Foundation Medical Image Computing Laboratory
69 rdf:type schema:Organization
70 N34e663823cc9451d84c2d08c244d896a rdf:first N3f904dff991c4da2a700dc97cf2cf71b
71 rdf:rest Nb356f5f79bf54a39acd79eea7a096361
72 N3ed2b705e4c24ecc8ae31d7f5b052fd0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name User-Computer Interface
74 rdf:type schema:DefinedTerm
75 N3f904dff991c4da2a700dc97cf2cf71b schema:familyName Larsen
76 schema:givenName Rasmus
77 rdf:type schema:Person
78 N42b5322bb52e4e01a0702083dcf84c2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Laparoscopy
80 rdf:type schema:DefinedTerm
81 N480aeb9e89404b3c9e1df1a897a711e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Surgery, Computer-Assisted
83 rdf:type schema:DefinedTerm
84 N4ccf9a25515f487393ab7d0abc070f34 rdf:first N311933bc2c764ad6bc1e799ad389bf87
85 rdf:rest rdf:nil
86 N518b4eae4487445d8a2613d4795d63b5 schema:isbn 978-3-540-44707-8
87 978-3-540-44708-5
88 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006
89 rdf:type schema:Book
90 N668b0f508e524497a6850b2facaf06bd schema:location Berlin, Heidelberg
91 schema:name Springer Berlin Heidelberg
92 rdf:type schema:Organisation
93 N67358caa76454e88969b8d7233f3cde2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Humans
95 rdf:type schema:DefinedTerm
96 N70a4083e95b34420b2aa0765432b4d16 schema:name pubmed_id
97 schema:value 17354909
98 rdf:type schema:PropertyValue
99 N7bf8c013a53e44be9cadcf2ad9ae335d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Models, Biological
101 rdf:type schema:DefinedTerm
102 N84683b09d3dc4b1482148dbfbcffde47 rdf:first sg:person.0702376130.54
103 rdf:rest N93e92ff0db1e4f749687c8e9f196ccd3
104 N93e92ff0db1e4f749687c8e9f196ccd3 rdf:first sg:person.01131663065.63
105 rdf:rest Ncf01cfeb7cb34bc090c0966f7c27ad6c
106 N96b5e94f944044b482611a10778f351a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Minimally Invasive Surgical Procedures
108 rdf:type schema:DefinedTerm
109 N997ba02d3d9f4a1d9ac0e98f106d0043 schema:familyName Nielsen
110 schema:givenName Mads
111 rdf:type schema:Person
112 N9ee9e5ef80d74826af81e5db4a7f336d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Algorithms
114 rdf:type schema:DefinedTerm
115 Na4257ce9297748f39ac04ada978c173c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Computer Simulation
117 rdf:type schema:DefinedTerm
118 Na648b3c6eee5412f8ab2439e9a67f2c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Image Enhancement
120 rdf:type schema:DefinedTerm
121 Nae27c16d88314e759282595156c69a8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Image Interpretation, Computer-Assisted
123 rdf:type schema:DefinedTerm
124 Nb356f5f79bf54a39acd79eea7a096361 rdf:first N997ba02d3d9f4a1d9ac0e98f106d0043
125 rdf:rest N4ccf9a25515f487393ab7d0abc070f34
126 Nc0cdcccaafe3477b8ee0eebbb919887f rdf:first sg:person.01324214223.90
127 rdf:rest rdf:nil
128 Nc431314b533e46618be6cfa6934c844a schema:name Royal Society/Wolfson Foundation Medical Image Computing Laboratory
129 rdf:type schema:Organization
130 Ncea8705ce3194e7a8a14d623f5226229 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Sensitivity and Specificity
132 rdf:type schema:DefinedTerm
133 Ncf01cfeb7cb34bc090c0966f7c27ad6c rdf:first sg:person.012373424637.73
134 rdf:rest Nc0cdcccaafe3477b8ee0eebbb919887f
135 Nde4000311b4b4b4abc7e3928edaec1e4 schema:name dimensions_id
136 schema:value pub.1043534590
137 rdf:type schema:PropertyValue
138 Ne2649adf98094724be09451453d8a310 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Imaging, Three-Dimensional
140 rdf:type schema:DefinedTerm
141 Nf90b23bcf9ba4468b2bec0e7fd3471f2 schema:name readcube_id
142 schema:value cf5f22d14f3759db3a1c6f73ff96d1fea6569f18596e104e8ed24559a4ce46d7
143 rdf:type schema:PropertyValue
144 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
145 schema:name Information and Computing Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
148 schema:name Artificial Intelligence and Image Processing
149 rdf:type schema:DefinedTerm
150 sg:person.01131663065.63 schema:affiliation N21b02604048b432c8f975975606b0002
151 schema:familyName Stoyanov
152 schema:givenName Danail
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131663065.63
154 rdf:type schema:Person
155 sg:person.012373424637.73 schema:affiliation N349e727c98944eda9cc63bf0fcdcad5e
156 schema:familyName Davison
157 schema:givenName Andrew
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012373424637.73
159 rdf:type schema:Person
160 sg:person.01324214223.90 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
161 schema:familyName Yang
162 schema:givenName Guang-Zhong
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324214223.90
164 rdf:type schema:Person
165 sg:person.0702376130.54 schema:affiliation Nc431314b533e46618be6cfa6934c844a
166 schema:familyName Mountney
167 schema:givenName Peter
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702376130.54
169 rdf:type schema:Person
170 sg:pub.10.1007/3-540-45468-3_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007684212
171 https://doi.org/10.1007/3-540-45468-3_38
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/978-3-540-30136-3_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047291475
174 https://doi.org/10.1007/978-3-540-30136-3_6
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.media.2005.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004437022
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/cvpr.1994.323794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093488775
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/cvpr.2005.477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093910153
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1109/iccv.2003.1238654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093273911
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/iros.2005.1545087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094810424
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1109/iros.2005.1545433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094387384
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1109/robot.1985.1087373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086236350
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1117/12.380037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014494483
191 rdf:type schema:CreativeWork
192 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
193 schema:name Department of Surgical Oncology and Technology, Imperial College, SW7 2BZ, London, UK
194 Royal Society/Wolfson Foundation Medical Image Computing Laboratory
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...