Ontology type: schema:Chapter
2006
AUTHORS ABSTRACTDistance labelings and compact routing schemes have both been active areas of recent research. It was already known that graphs with constant-sized recursive separators, such as trees, outerplanar graphs, series-parallel graphs and graphs of bounded treewidth, support both exact distance labelings and optimal (additive stretch 0, multiplicative stretch 1) compact routing schemes, but there are many classes of graphs known to admit exact distance labelings that do not have constant-sized separators. Our main result is to demonstrate that every unweighted, undirected n-vertex graph which supports an exact distance labeling with l(n)-sized labels also supports a compact routing scheme with O(l(n) + log2n/loglogn)-sized headers, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\sqrt{n}(l(n) + \log^2{n}/\log{\log{n}}))$\end{document}-sized routing tables, and an additive stretch of 6.We then investigate two classes of graphs which support exact distance labelings (but do not guarantee constant-sized separators), where we can improve substantially on our general result. In the case of interval graphs, we present a compact routing scheme with O(logn)-sized headers, O(logn)-sized routing tables and additive stretch 1, improving headers and table sizes from a result of [1], which uses O(log3n/loglogn)-bit headers and tables. We also present a compact routing scheme for the related family of circular arc graphs which guarantees O(log2n)-sized headers, O(logn)-sized routing tables and an additive stretch of 1. More... »
PAGES339-354
Distributed Computing
ISBN
978-3-540-44624-8
978-3-540-44627-9
http://scigraph.springernature.com/pub.10.1007/11864219_24
DOIhttp://dx.doi.org/10.1007/11864219_24
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1052251884
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Technology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Communications Technologies",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Computer Science, Tufts University, Medford, MA, USA",
"id": "http://www.grid.ac/institutes/grid.429997.8",
"name": [
"Department of Computer Science, Tufts University, Medford, MA, USA"
],
"type": "Organization"
},
"familyName": "Brady",
"givenName": "Arthur",
"id": "sg:person.01025032714.70",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025032714.70"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science, Tufts University, Medford, MA, USA",
"id": "http://www.grid.ac/institutes/grid.429997.8",
"name": [
"Department of Computer Science, Tufts University, Medford, MA, USA"
],
"type": "Organization"
},
"familyName": "Cowen",
"givenName": "Lenore",
"id": "sg:person.01106351776.04",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106351776.04"
],
"type": "Person"
}
],
"datePublished": "2006",
"datePublishedReg": "2006-01-01",
"description": "Distance labelings and compact routing schemes have both been active areas of recent research. It was already known that graphs with constant-sized recursive separators, such as trees, outerplanar graphs, series-parallel graphs and graphs of bounded treewidth, support both exact distance labelings and optimal (additive stretch 0, multiplicative stretch 1) compact routing schemes, but there are many classes of graphs known to admit exact distance labelings that do not have constant-sized separators. Our main result is to demonstrate that every unweighted, undirected n-vertex graph which supports an exact distance labeling with l(n)-sized labels also supports a compact routing scheme with O(l(n) + log2n/loglogn)-sized headers, \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$O(\\sqrt{n}(l(n) + \\log^2{n}/\\log{\\log{n}}))$\\end{document}-sized routing tables, and an additive stretch of 6.We then investigate two classes of graphs which support exact distance labelings (but do not guarantee constant-sized separators), where we can improve substantially on our general result. In the case of interval graphs, we present a compact routing scheme with O(logn)-sized headers, O(logn)-sized routing tables and additive stretch 1, improving headers and table sizes from a result of [1], which uses O(log3n/loglogn)-bit headers and tables. We also present a compact routing scheme for the related family of circular arc graphs which guarantees O(log2n)-sized headers, O(logn)-sized routing tables and an additive stretch of 1.",
"editor": [
{
"familyName": "Dolev",
"givenName": "Shlomi",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/11864219_24",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-540-44624-8",
"978-3-540-44627-9"
],
"name": "Distributed Computing",
"type": "Book"
},
"keywords": [
"routing scheme",
"routing tables",
"distance labeling",
"compact routing scheme",
"series-parallel graphs",
"class of graphs",
"additive stretch",
"table size",
"header",
"graph",
"interval graphs",
"scheme",
"outerplanar graphs",
"labeling",
"vertex graph",
"table",
"stretch 1",
"treewidth",
"active area",
"recent research",
"main results",
"labels",
"trees",
"class",
"results",
"stretch",
"cases",
"related families",
"family",
"area",
"research",
"size",
"general results",
"separator",
"circular",
"bit headers"
],
"name": "Exact Distance Labelings Yield Additive-Stretch Compact Routing Schemes",
"pagination": "339-354",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1052251884"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/11864219_24"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/11864219_24",
"https://app.dimensions.ai/details/publication/pub.1052251884"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:28",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_162.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/11864219_24"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11864219_24'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11864219_24'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11864219_24'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11864219_24'
This table displays all metadata directly associated to this object as RDF triples.
103 TRIPLES
23 PREDICATES
62 URIs
55 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/11864219_24 | schema:about | anzsrc-for:10 |
2 | ″ | ″ | anzsrc-for:1005 |
3 | ″ | schema:author | N28b995d793e14368b9a20e0c8e9dea1b |
4 | ″ | schema:datePublished | 2006 |
5 | ″ | schema:datePublishedReg | 2006-01-01 |
6 | ″ | schema:description | Distance labelings and compact routing schemes have both been active areas of recent research. It was already known that graphs with constant-sized recursive separators, such as trees, outerplanar graphs, series-parallel graphs and graphs of bounded treewidth, support both exact distance labelings and optimal (additive stretch 0, multiplicative stretch 1) compact routing schemes, but there are many classes of graphs known to admit exact distance labelings that do not have constant-sized separators. Our main result is to demonstrate that every unweighted, undirected n-vertex graph which supports an exact distance labeling with l(n)-sized labels also supports a compact routing scheme with O(l(n) + log2n/loglogn)-sized headers, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\sqrt{n}(l(n) + \log^2{n}/\log{\log{n}}))$\end{document}-sized routing tables, and an additive stretch of 6.We then investigate two classes of graphs which support exact distance labelings (but do not guarantee constant-sized separators), where we can improve substantially on our general result. In the case of interval graphs, we present a compact routing scheme with O(logn)-sized headers, O(logn)-sized routing tables and additive stretch 1, improving headers and table sizes from a result of [1], which uses O(log3n/loglogn)-bit headers and tables. We also present a compact routing scheme for the related family of circular arc graphs which guarantees O(log2n)-sized headers, O(logn)-sized routing tables and an additive stretch of 1. |
7 | ″ | schema:editor | Nda92b3b71bb8402982ae193a2a6ea326 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | Nf758b8d796e1498289f221520e2495b2 |
12 | ″ | schema:keywords | active area |
13 | ″ | ″ | additive stretch |
14 | ″ | ″ | area |
15 | ″ | ″ | bit headers |
16 | ″ | ″ | cases |
17 | ″ | ″ | circular |
18 | ″ | ″ | class |
19 | ″ | ″ | class of graphs |
20 | ″ | ″ | compact routing scheme |
21 | ″ | ″ | distance labeling |
22 | ″ | ″ | family |
23 | ″ | ″ | general results |
24 | ″ | ″ | graph |
25 | ″ | ″ | header |
26 | ″ | ″ | interval graphs |
27 | ″ | ″ | labeling |
28 | ″ | ″ | labels |
29 | ″ | ″ | main results |
30 | ″ | ″ | outerplanar graphs |
31 | ″ | ″ | recent research |
32 | ″ | ″ | related families |
33 | ″ | ″ | research |
34 | ″ | ″ | results |
35 | ″ | ″ | routing scheme |
36 | ″ | ″ | routing tables |
37 | ″ | ″ | scheme |
38 | ″ | ″ | separator |
39 | ″ | ″ | series-parallel graphs |
40 | ″ | ″ | size |
41 | ″ | ″ | stretch |
42 | ″ | ″ | stretch 1 |
43 | ″ | ″ | table |
44 | ″ | ″ | table size |
45 | ″ | ″ | trees |
46 | ″ | ″ | treewidth |
47 | ″ | ″ | vertex graph |
48 | ″ | schema:name | Exact Distance Labelings Yield Additive-Stretch Compact Routing Schemes |
49 | ″ | schema:pagination | 339-354 |
50 | ″ | schema:productId | N56accd171e6d463ea8c312d880ac442f |
51 | ″ | ″ | Nf3294a07137946479b8b86e81f39fc30 |
52 | ″ | schema:publisher | N683b15858a6745c1953758519ca11be4 |
53 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1052251884 |
54 | ″ | ″ | https://doi.org/10.1007/11864219_24 |
55 | ″ | schema:sdDatePublished | 2022-06-01T22:28 |
56 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
57 | ″ | schema:sdPublisher | Nbc28143dc2dd4f4393363b9a1edc7739 |
58 | ″ | schema:url | https://doi.org/10.1007/11864219_24 |
59 | ″ | sgo:license | sg:explorer/license/ |
60 | ″ | sgo:sdDataset | chapters |
61 | ″ | rdf:type | schema:Chapter |
62 | N1809ce63920146178ab35e1e757185e5 | rdf:first | sg:person.01106351776.04 |
63 | ″ | rdf:rest | rdf:nil |
64 | N27dca0346ebe4f8a8ad176574b8ccd31 | schema:familyName | Dolev |
65 | ″ | schema:givenName | Shlomi |
66 | ″ | rdf:type | schema:Person |
67 | N28b995d793e14368b9a20e0c8e9dea1b | rdf:first | sg:person.01025032714.70 |
68 | ″ | rdf:rest | N1809ce63920146178ab35e1e757185e5 |
69 | N56accd171e6d463ea8c312d880ac442f | schema:name | dimensions_id |
70 | ″ | schema:value | pub.1052251884 |
71 | ″ | rdf:type | schema:PropertyValue |
72 | N683b15858a6745c1953758519ca11be4 | schema:name | Springer Nature |
73 | ″ | rdf:type | schema:Organisation |
74 | Nbc28143dc2dd4f4393363b9a1edc7739 | schema:name | Springer Nature - SN SciGraph project |
75 | ″ | rdf:type | schema:Organization |
76 | Nda92b3b71bb8402982ae193a2a6ea326 | rdf:first | N27dca0346ebe4f8a8ad176574b8ccd31 |
77 | ″ | rdf:rest | rdf:nil |
78 | Nf3294a07137946479b8b86e81f39fc30 | schema:name | doi |
79 | ″ | schema:value | 10.1007/11864219_24 |
80 | ″ | rdf:type | schema:PropertyValue |
81 | Nf758b8d796e1498289f221520e2495b2 | schema:isbn | 978-3-540-44624-8 |
82 | ″ | ″ | 978-3-540-44627-9 |
83 | ″ | schema:name | Distributed Computing |
84 | ″ | rdf:type | schema:Book |
85 | anzsrc-for:10 | schema:inDefinedTermSet | anzsrc-for: |
86 | ″ | schema:name | Technology |
87 | ″ | rdf:type | schema:DefinedTerm |
88 | anzsrc-for:1005 | schema:inDefinedTermSet | anzsrc-for: |
89 | ″ | schema:name | Communications Technologies |
90 | ″ | rdf:type | schema:DefinedTerm |
91 | sg:person.01025032714.70 | schema:affiliation | grid-institutes:grid.429997.8 |
92 | ″ | schema:familyName | Brady |
93 | ″ | schema:givenName | Arthur |
94 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025032714.70 |
95 | ″ | rdf:type | schema:Person |
96 | sg:person.01106351776.04 | schema:affiliation | grid-institutes:grid.429997.8 |
97 | ″ | schema:familyName | Cowen |
98 | ″ | schema:givenName | Lenore |
99 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106351776.04 |
100 | ″ | rdf:type | schema:Person |
101 | grid-institutes:grid.429997.8 | schema:alternateName | Department of Computer Science, Tufts University, Medford, MA, USA |
102 | ″ | schema:name | Department of Computer Science, Tufts University, Medford, MA, USA |
103 | ″ | rdf:type | schema:Organization |