On-Line, Incremental Learning of a Robust Active Shape Model View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2006

AUTHORS

Michael Fussenegger , Peter M. Roth , Horst Bischof , Axel Pinz

ABSTRACT

Active Shape Models are commonly used to recognize and locate different aspects of known rigid objects. However, they require an off-line learning stage, such that the extension of an existing model requires a complete new re-training phase. Furthermore, learning is based on principal component analysis and requires perfect training data that is not corrupted by partial occlusions or imperfect segmentation. The contribution of this paper is twofold: First, we present a novel robust Active Shape Model that can handle corrupted shape data. Second, this model can be created on-line through the use of a robust incremental PCA algorithm. Thus, an already partially learned Active Shape Model can be used for segmentation of a new image in a level set framework and the result of this segmentation process can be used for an on-line update of the robust model. Our experimental results demonstrate the robustness and the flexibility of this new model, which is at the same time computationally much more efficient than previous ASMs using batch or iterated batch PCA. More... »

PAGES

122-131

Book

TITLE

Pattern Recognition

ISBN

978-3-540-44412-1
978-3-540-44414-5

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11861898_13

DOI

http://dx.doi.org/10.1007/11861898_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029837518


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute of Electrical Measurement and Measurement Signal Processing, Graz University of Technology, Kopernikusgasse 24/IV, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fussenegger", 
        "givenName": "Michael", 
        "id": "sg:person.01330551375.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330551375.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16/II, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roth", 
        "givenName": "Peter M.", 
        "id": "sg:person.011744074244.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011744074244.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16/II, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bischof", 
        "givenName": "Horst", 
        "id": "sg:person.013002347027.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013002347027.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute of Electrical Measurement and Measurement Signal Processing, Graz University of Technology, Kopernikusgasse 24/IV, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pinz", 
        "givenName": "Axel", 
        "id": "sg:person.012033065653.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012033065653.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-44935-3_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006695512", 
          "https://doi.org/10.1007/3-540-44935-3_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-44935-3_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006695512", 
          "https://doi.org/10.1007/3-540-44935-3_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-47967-8_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012853927", 
          "https://doi.org/10.1007/3-540-47967-8_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-47967-8_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012853927", 
          "https://doi.org/10.1007/3-540-47967-8_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9868.00196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015007392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-47969-4_47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021547010", 
          "https://doi.org/10.1007/3-540-47969-4_47"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-28649-3_51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022236629", 
          "https://doi.org/10.1007/978-3-540-28649-3_51"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-28649-3_51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022236629", 
          "https://doi.org/10.1007/978-3-540-28649-3_51"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(88)90002-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024042944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/cviu.1999.0830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029332517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0071325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033321863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11612704_40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034676639", 
          "https://doi.org/10.1007/11612704_40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11612704_40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034676639", 
          "https://doi.org/10.1007/11612704_40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-47979-1_51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034991400", 
          "https://doi.org/10.1007/3-540-47979-1_51"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0015548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040495258", 
          "https://doi.org/10.1007/bfb0015548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0015548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040495258", 
          "https://doi.org/10.1007/bfb0015548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2003.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041813953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.877525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.363442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2001.937541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093802914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2003.1238667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093883020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.1997.609378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095391553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5244/c.12.29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099368103"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "Active Shape Models are commonly used to recognize and locate different aspects of known rigid objects. However, they require an off-line learning stage, such that the extension of an existing model requires a complete new re-training phase. Furthermore, learning is based on principal component analysis and requires perfect training data that is not corrupted by partial occlusions or imperfect segmentation. The contribution of this paper is twofold: First, we present a novel robust Active Shape Model that can handle corrupted shape data. Second, this model can be created on-line through the use of a robust incremental PCA algorithm. Thus, an already partially learned Active Shape Model can be used for segmentation of a new image in a level set framework and the result of this segmentation process can be used for an on-line update of the robust model. Our experimental results demonstrate the robustness and the flexibility of this new model, which is at the same time computationally much more efficient than previous ASMs using batch or iterated batch PCA.", 
    "editor": [
      {
        "familyName": "Franke", 
        "givenName": "Katrin", 
        "type": "Person"
      }, 
      {
        "familyName": "M\u00fcller", 
        "givenName": "Klaus-Robert", 
        "type": "Person"
      }, 
      {
        "familyName": "Nickolay", 
        "givenName": "Bertram", 
        "type": "Person"
      }, 
      {
        "familyName": "Sch\u00e4fer", 
        "givenName": "Ralf", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11861898_13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-44412-1", 
        "978-3-540-44414-5"
      ], 
      "name": "Pattern Recognition", 
      "type": "Book"
    }, 
    "name": "On-Line, Incremental Learning of a Robust Active Shape Model", 
    "pagination": "122-131", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029837518"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11861898_13"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8e2482c289762d7ba3680107005ea1723fe37ce6cc15d268a405958dd63a649c"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11861898_13", 
      "https://app.dimensions.ai/details/publication/pub.1029837518"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000355_0000000355/records_53014_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F11861898_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11861898_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11861898_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11861898_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11861898_13'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      23 PREDICATES      45 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11861898_13 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd4728c6e203e483f9170212178ad2948
4 schema:citation sg:pub.10.1007/11612704_40
5 sg:pub.10.1007/3-540-44935-3_27
6 sg:pub.10.1007/3-540-47967-8_6
7 sg:pub.10.1007/3-540-47969-4_47
8 sg:pub.10.1007/3-540-47979-1_51
9 sg:pub.10.1007/978-3-540-28649-3_51
10 sg:pub.10.1007/bfb0015548
11 https://doi.org/10.1006/cviu.1999.0830
12 https://doi.org/10.1016/0021-9991(88)90002-2
13 https://doi.org/10.1016/j.patcog.2003.11.010
14 https://doi.org/10.1037/h0071325
15 https://doi.org/10.1109/34.877525
16 https://doi.org/10.1109/72.363442
17 https://doi.org/10.1109/cvpr.1997.609378
18 https://doi.org/10.1109/iccv.2001.937541
19 https://doi.org/10.1109/iccv.2003.1238667
20 https://doi.org/10.1111/1467-9868.00196
21 https://doi.org/10.5244/c.12.29
22 schema:datePublished 2006
23 schema:datePublishedReg 2006-01-01
24 schema:description Active Shape Models are commonly used to recognize and locate different aspects of known rigid objects. However, they require an off-line learning stage, such that the extension of an existing model requires a complete new re-training phase. Furthermore, learning is based on principal component analysis and requires perfect training data that is not corrupted by partial occlusions or imperfect segmentation. The contribution of this paper is twofold: First, we present a novel robust Active Shape Model that can handle corrupted shape data. Second, this model can be created on-line through the use of a robust incremental PCA algorithm. Thus, an already partially learned Active Shape Model can be used for segmentation of a new image in a level set framework and the result of this segmentation process can be used for an on-line update of the robust model. Our experimental results demonstrate the robustness and the flexibility of this new model, which is at the same time computationally much more efficient than previous ASMs using batch or iterated batch PCA.
25 schema:editor Nd4fa2334d81b47f183e81d17b3bb81dc
26 schema:genre chapter
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N6adcc5b79d514faca65906b42a4a6f65
30 schema:name On-Line, Incremental Learning of a Robust Active Shape Model
31 schema:pagination 122-131
32 schema:productId N35fae39481f4427bbaca4363af6e8ffb
33 N36e4700d8df44531b7b6f99c1ac5d584
34 Nd6860fcaf9b04916a38faadcacdb6414
35 schema:publisher N48709b849a0944dc87f5f6f82777f213
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029837518
37 https://doi.org/10.1007/11861898_13
38 schema:sdDatePublished 2019-04-16T07:27
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nb86cb2facb9048078acf5281a6e325da
41 schema:url https://link.springer.com/10.1007%2F11861898_13
42 sgo:license sg:explorer/license/
43 sgo:sdDataset chapters
44 rdf:type schema:Chapter
45 N211f33d3c8284064ad09284117e0dc9a rdf:first sg:person.013002347027.27
46 rdf:rest N459ae28e3ff847d781092b5abf11b13a
47 N2677be7d04ba497ab52d11ea4f9713be rdf:first sg:person.011744074244.49
48 rdf:rest N211f33d3c8284064ad09284117e0dc9a
49 N35fae39481f4427bbaca4363af6e8ffb schema:name doi
50 schema:value 10.1007/11861898_13
51 rdf:type schema:PropertyValue
52 N36e4700d8df44531b7b6f99c1ac5d584 schema:name readcube_id
53 schema:value 8e2482c289762d7ba3680107005ea1723fe37ce6cc15d268a405958dd63a649c
54 rdf:type schema:PropertyValue
55 N38fb263b490744618c320886f2925634 schema:familyName Schäfer
56 schema:givenName Ralf
57 rdf:type schema:Person
58 N459ae28e3ff847d781092b5abf11b13a rdf:first sg:person.012033065653.49
59 rdf:rest rdf:nil
60 N48709b849a0944dc87f5f6f82777f213 schema:location Berlin, Heidelberg
61 schema:name Springer Berlin Heidelberg
62 rdf:type schema:Organisation
63 N4ae9b3beb0104f218dfcc1ad75f5b007 rdf:first N38fb263b490744618c320886f2925634
64 rdf:rest rdf:nil
65 N5a0bc2a6810845e1aab42edff10f9877 schema:familyName Franke
66 schema:givenName Katrin
67 rdf:type schema:Person
68 N6adcc5b79d514faca65906b42a4a6f65 schema:isbn 978-3-540-44412-1
69 978-3-540-44414-5
70 schema:name Pattern Recognition
71 rdf:type schema:Book
72 N8de7b321b9f449d9a5e8acc79d88a41e schema:familyName Nickolay
73 schema:givenName Bertram
74 rdf:type schema:Person
75 N94ba1f93d2864595b61495275953ea05 schema:familyName Müller
76 schema:givenName Klaus-Robert
77 rdf:type schema:Person
78 Nb86cb2facb9048078acf5281a6e325da schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Nbad02d6ebe4740ba99e1eef67fdb9477 rdf:first N8de7b321b9f449d9a5e8acc79d88a41e
81 rdf:rest N4ae9b3beb0104f218dfcc1ad75f5b007
82 Nd4728c6e203e483f9170212178ad2948 rdf:first sg:person.01330551375.09
83 rdf:rest N2677be7d04ba497ab52d11ea4f9713be
84 Nd4fa2334d81b47f183e81d17b3bb81dc rdf:first N5a0bc2a6810845e1aab42edff10f9877
85 rdf:rest Nf6f5e5d5a6de4e0da23456c6d42d1898
86 Nd6860fcaf9b04916a38faadcacdb6414 schema:name dimensions_id
87 schema:value pub.1029837518
88 rdf:type schema:PropertyValue
89 Nf6f5e5d5a6de4e0da23456c6d42d1898 rdf:first N94ba1f93d2864595b61495275953ea05
90 rdf:rest Nbad02d6ebe4740ba99e1eef67fdb9477
91 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
92 schema:name Information and Computing Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
95 schema:name Artificial Intelligence and Image Processing
96 rdf:type schema:DefinedTerm
97 sg:person.011744074244.49 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
98 schema:familyName Roth
99 schema:givenName Peter M.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011744074244.49
101 rdf:type schema:Person
102 sg:person.012033065653.49 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
103 schema:familyName Pinz
104 schema:givenName Axel
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012033065653.49
106 rdf:type schema:Person
107 sg:person.013002347027.27 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
108 schema:familyName Bischof
109 schema:givenName Horst
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013002347027.27
111 rdf:type schema:Person
112 sg:person.01330551375.09 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
113 schema:familyName Fussenegger
114 schema:givenName Michael
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330551375.09
116 rdf:type schema:Person
117 sg:pub.10.1007/11612704_40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034676639
118 https://doi.org/10.1007/11612704_40
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/3-540-44935-3_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006695512
121 https://doi.org/10.1007/3-540-44935-3_27
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/3-540-47967-8_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012853927
124 https://doi.org/10.1007/3-540-47967-8_6
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/3-540-47969-4_47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021547010
127 https://doi.org/10.1007/3-540-47969-4_47
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/3-540-47979-1_51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034991400
130 https://doi.org/10.1007/3-540-47979-1_51
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/978-3-540-28649-3_51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022236629
133 https://doi.org/10.1007/978-3-540-28649-3_51
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/bfb0015548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040495258
136 https://doi.org/10.1007/bfb0015548
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1006/cviu.1999.0830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029332517
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/0021-9991(88)90002-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024042944
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.patcog.2003.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041813953
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1037/h0071325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033321863
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/34.877525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157151
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/72.363442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218539
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/cvpr.1997.609378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095391553
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/iccv.2001.937541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093802914
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/iccv.2003.1238667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093883020
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1111/1467-9868.00196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015007392
157 rdf:type schema:CreativeWork
158 https://doi.org/10.5244/c.12.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099368103
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.410413.3 schema:alternateName Graz University of Technology
161 schema:name Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16/II, 8010, Graz, Austria
162 Institute of Electrical Measurement and Measurement Signal Processing, Graz University of Technology, Kopernikusgasse 24/IV, 8010, Graz, Austria
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...