Comparative Gene Prediction Based on Gene Structure Conservation View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2006

AUTHORS

Shu Ju Hsieh , Chun Yuan Lin , Ning Han Liu , Chuan Yi Tang

ABSTRACT

Identifying protein coding genes is one of most important task in newly sequenced genomes. With increasing numbers of gene annotations verified by experiments, it is feasible to identify genes in newly sequenced genomes by comparing with genes annotated on phylogenetically close organisms. Here, we propose a program, GeneAlign, which predicts the genes on one sequence by measuring the similarity between the predicted sequence and related genes annotated on another genome. The program applies CORAL, a heuristic linear time alignment tool, to determine whether the regions flanked by candidate signals are similar with the annotated exons or not. The approach, which employs the conservation of gene structures and sequence homologies between protein coding regions, increases the prediction accuracy. GeneAlign was tested on Projector data set of 449 human-mouse homologous sequence pairs. At the gene level, the sensitivity and specificity of GeneAlign are 80%, and larger than 96% at the exon level. More... »

PAGES

32-41

Book

TITLE

Pattern Recognition in Bioinformatics

ISBN

978-3-540-37446-6
978-3-540-37447-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11818564_5

DOI

http://dx.doi.org/10.1007/11818564_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014293158


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Computer Science"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hsieh", 
        "givenName": "Shu Ju", 
        "id": "sg:person.01316440644.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316440644.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Institute of Molecular and Cellular Biology, National Tsing-Hua University, Hsinchu, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Chun Yuan", 
        "id": "sg:person.0665540554.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665540554.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Computer Science"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Ning Han", 
        "id": "sg:person.015303142063.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015303142063.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Computer Science"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Chuan Yi", 
        "id": "sg:person.01312526135.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312526135.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1101/gr.1562804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002764573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.10.7.950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005209953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012203647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013467738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1858004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014501763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015580011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.871403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018275334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.10.1309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020249132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sbi.2004.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021236250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1865504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025613345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.11.1011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025889795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026387036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.17.9061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027494985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1997.0951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028174721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti1040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030525280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031181992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.1.126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034135878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/geno.1996.0298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034621866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038073766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039854529", 
          "https://doi.org/10.1038/nature01262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039854529", 
          "https://doi.org/10.1038/nature01262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040417975", 
          "https://doi.org/10.1186/1471-2105-5-14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042654743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.424203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048485966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.suppl_1.s140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051444796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.10.8.1115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052106233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.195301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074949085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.8.9.967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083321060"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "Identifying protein coding genes is one of most important task in newly sequenced genomes. With increasing numbers of gene annotations verified by experiments, it is feasible to identify genes in newly sequenced genomes by comparing with genes annotated on phylogenetically close organisms. Here, we propose a program, GeneAlign, which predicts the genes on one sequence by measuring the similarity between the predicted sequence and related genes annotated on another genome. The program applies CORAL, a heuristic linear time alignment tool, to determine whether the regions flanked by candidate signals are similar with the annotated exons or not. The approach, which employs the conservation of gene structures and sequence homologies between protein coding regions, increases the prediction accuracy. GeneAlign was tested on Projector data set of 449 human-mouse homologous sequence pairs. At the gene level, the sensitivity and specificity of GeneAlign are 80%, and larger than 96% at the exon level.", 
    "editor": [
      {
        "familyName": "Rajapakse", 
        "givenName": "Jagath C.", 
        "type": "Person"
      }, 
      {
        "familyName": "Wong", 
        "givenName": "Limsoon", 
        "type": "Person"
      }, 
      {
        "familyName": "Acharya", 
        "givenName": "Raj", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11818564_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-37446-6", 
        "978-3-540-37447-3"
      ], 
      "name": "Pattern Recognition in Bioinformatics", 
      "type": "Book"
    }, 
    "name": "Comparative Gene Prediction Based on Gene Structure Conservation", 
    "pagination": "32-41", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014293158"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11818564_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "441791c8fd4cf510b379d8a917c3470bdf67b9f8e07a0ec11a6d22a2ca0dd2f7"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11818564_5", 
      "https://app.dimensions.ai/details/publication/pub.1014293158"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57865_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F11818564_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11818564_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11818564_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11818564_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11818564_5'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      23 PREDICATES      54 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11818564_5 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Ne2d66136d7c14f83be69f9ac7357a0f7
4 schema:citation sg:pub.10.1038/nature01262
5 sg:pub.10.1186/1471-2105-5-14
6 https://doi.org/10.1006/geno.1996.0298
7 https://doi.org/10.1006/jmbi.1997.0951
8 https://doi.org/10.1016/j.sbi.2004.05.007
9 https://doi.org/10.1073/pnas.93.17.9061
10 https://doi.org/10.1093/bioinformatics/17.11.1011
11 https://doi.org/10.1093/bioinformatics/17.suppl_1.s140
12 https://doi.org/10.1093/bioinformatics/18.10.1309
13 https://doi.org/10.1093/bioinformatics/bth058
14 https://doi.org/10.1093/bioinformatics/bti025
15 https://doi.org/10.1093/bioinformatics/bti1040
16 https://doi.org/10.1093/bioinformatics/bti310
17 https://doi.org/10.1093/bioinformatics/bti609
18 https://doi.org/10.1093/nar/29.1.126
19 https://doi.org/10.1093/nar/gkg129
20 https://doi.org/10.1093/nar/gkh211
21 https://doi.org/10.1093/nar/gki025
22 https://doi.org/10.1101/gr.10.7.950
23 https://doi.org/10.1101/gr.10.8.1115
24 https://doi.org/10.1101/gr.1562804
25 https://doi.org/10.1101/gr.1858004
26 https://doi.org/10.1101/gr.1865504
27 https://doi.org/10.1101/gr.195301
28 https://doi.org/10.1101/gr.424203
29 https://doi.org/10.1101/gr.8.9.967
30 https://doi.org/10.1101/gr.871403
31 schema:datePublished 2006
32 schema:datePublishedReg 2006-01-01
33 schema:description Identifying protein coding genes is one of most important task in newly sequenced genomes. With increasing numbers of gene annotations verified by experiments, it is feasible to identify genes in newly sequenced genomes by comparing with genes annotated on phylogenetically close organisms. Here, we propose a program, GeneAlign, which predicts the genes on one sequence by measuring the similarity between the predicted sequence and related genes annotated on another genome. The program applies CORAL, a heuristic linear time alignment tool, to determine whether the regions flanked by candidate signals are similar with the annotated exons or not. The approach, which employs the conservation of gene structures and sequence homologies between protein coding regions, increases the prediction accuracy. GeneAlign was tested on Projector data set of 449 human-mouse homologous sequence pairs. At the gene level, the sensitivity and specificity of GeneAlign are 80%, and larger than 96% at the exon level.
34 schema:editor N8f3f3bc55de346888a0914464e36b05b
35 schema:genre chapter
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N48fc10d8a17b4ffba17a64dd6894a39a
39 schema:name Comparative Gene Prediction Based on Gene Structure Conservation
40 schema:pagination 32-41
41 schema:productId N7ab26de974564218aca520a2068d1707
42 N9eaaf656cdff4a11818aa1f0cdbafb3d
43 Ne10c2362668c42309cd13b112c5cb033
44 schema:publisher Nb31a0ba1adc6499bbc0aba28b3e44e58
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014293158
46 https://doi.org/10.1007/11818564_5
47 schema:sdDatePublished 2019-04-16T07:29
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N3e0a1e17c2574a629f9daedaa35103dc
50 schema:url https://link.springer.com/10.1007%2F11818564_5
51 sgo:license sg:explorer/license/
52 sgo:sdDataset chapters
53 rdf:type schema:Chapter
54 N132152e9b7ac4d3a81b23fd8a66d3cf2 schema:name Department of Computer Science
55 rdf:type schema:Organization
56 N25ac26f09b734e478403a90f4bb02f34 schema:familyName Wong
57 schema:givenName Limsoon
58 rdf:type schema:Person
59 N3e0a1e17c2574a629f9daedaa35103dc schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N3fc62153f82946c88ad795a59b3adf36 rdf:first sg:person.0665540554.26
62 rdf:rest N64d5e656ee1143dd860750ea32329212
63 N48fc10d8a17b4ffba17a64dd6894a39a schema:isbn 978-3-540-37446-6
64 978-3-540-37447-3
65 schema:name Pattern Recognition in Bioinformatics
66 rdf:type schema:Book
67 N49f5a264e8e0420d8483206128c1804f schema:familyName Acharya
68 schema:givenName Raj
69 rdf:type schema:Person
70 N5272f8928c7046e3ab5337d1f18e9dad rdf:first sg:person.01312526135.27
71 rdf:rest rdf:nil
72 N64d5e656ee1143dd860750ea32329212 rdf:first sg:person.015303142063.76
73 rdf:rest N5272f8928c7046e3ab5337d1f18e9dad
74 N7954309afd494eacac0b3d1c93bf14ca schema:name Department of Computer Science
75 rdf:type schema:Organization
76 N7ab26de974564218aca520a2068d1707 schema:name readcube_id
77 schema:value 441791c8fd4cf510b379d8a917c3470bdf67b9f8e07a0ec11a6d22a2ca0dd2f7
78 rdf:type schema:PropertyValue
79 N89b411fe20684ce6a8989f2557533d7c rdf:first N25ac26f09b734e478403a90f4bb02f34
80 rdf:rest Ncfb9621bc7ef4eb4af8fa6a489e7bd85
81 N8b0cfc6b9ac943ff8ab543f1af469695 schema:name Department of Computer Science
82 rdf:type schema:Organization
83 N8f3f3bc55de346888a0914464e36b05b rdf:first Nbe2bbd72b7b0430183ef456d0a0f7e8c
84 rdf:rest N89b411fe20684ce6a8989f2557533d7c
85 N9eaaf656cdff4a11818aa1f0cdbafb3d schema:name dimensions_id
86 schema:value pub.1014293158
87 rdf:type schema:PropertyValue
88 Nb31a0ba1adc6499bbc0aba28b3e44e58 schema:location Berlin, Heidelberg
89 schema:name Springer Berlin Heidelberg
90 rdf:type schema:Organisation
91 Nbe2bbd72b7b0430183ef456d0a0f7e8c schema:familyName Rajapakse
92 schema:givenName Jagath C.
93 rdf:type schema:Person
94 Ncfb9621bc7ef4eb4af8fa6a489e7bd85 rdf:first N49f5a264e8e0420d8483206128c1804f
95 rdf:rest rdf:nil
96 Ne10c2362668c42309cd13b112c5cb033 schema:name doi
97 schema:value 10.1007/11818564_5
98 rdf:type schema:PropertyValue
99 Ne2d66136d7c14f83be69f9ac7357a0f7 rdf:first sg:person.01316440644.33
100 rdf:rest N3fc62153f82946c88ad795a59b3adf36
101 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
102 schema:name Biological Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
105 schema:name Genetics
106 rdf:type schema:DefinedTerm
107 sg:person.01312526135.27 schema:affiliation N132152e9b7ac4d3a81b23fd8a66d3cf2
108 schema:familyName Tang
109 schema:givenName Chuan Yi
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312526135.27
111 rdf:type schema:Person
112 sg:person.01316440644.33 schema:affiliation N8b0cfc6b9ac943ff8ab543f1af469695
113 schema:familyName Hsieh
114 schema:givenName Shu Ju
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316440644.33
116 rdf:type schema:Person
117 sg:person.015303142063.76 schema:affiliation N7954309afd494eacac0b3d1c93bf14ca
118 schema:familyName Liu
119 schema:givenName Ning Han
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015303142063.76
121 rdf:type schema:Person
122 sg:person.0665540554.26 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
123 schema:familyName Lin
124 schema:givenName Chun Yuan
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665540554.26
126 rdf:type schema:Person
127 sg:pub.10.1038/nature01262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039854529
128 https://doi.org/10.1038/nature01262
129 rdf:type schema:CreativeWork
130 sg:pub.10.1186/1471-2105-5-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040417975
131 https://doi.org/10.1186/1471-2105-5-14
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1006/geno.1996.0298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034621866
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1006/jmbi.1997.0951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028174721
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.sbi.2004.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021236250
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1073/pnas.93.17.9061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027494985
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1093/bioinformatics/17.11.1011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025889795
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1093/bioinformatics/17.suppl_1.s140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051444796
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1093/bioinformatics/18.10.1309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020249132
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1093/bioinformatics/bth058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031181992
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1093/bioinformatics/bti025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013467738
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1093/bioinformatics/bti1040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030525280
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1093/bioinformatics/bti310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015580011
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1093/bioinformatics/bti609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026387036
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1093/nar/29.1.126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034135878
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1093/nar/gkg129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012203647
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1093/nar/gkh211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042654743
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1093/nar/gki025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038073766
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1101/gr.10.7.950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005209953
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1101/gr.10.8.1115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052106233
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1101/gr.1562804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002764573
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1101/gr.1858004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014501763
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1101/gr.1865504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025613345
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1101/gr.195301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074949085
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1101/gr.424203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048485966
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1101/gr.8.9.967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083321060
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1101/gr.871403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018275334
182 rdf:type schema:CreativeWork
183 https://www.grid.ac/institutes/grid.38348.34 schema:alternateName National Tsing Hua University
184 schema:name Institute of Molecular and Cellular Biology, National Tsing-Hua University, Hsinchu, Taiwan, ROC
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...