# Recognition of Probe Cographs and Partitioned Probe Distance Hereditary Graphs

Ontology type: schema:Chapter

### Chapter Info

DATE

2006

AUTHORS ABSTRACT

Given a class of graphs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal G}$\end{document}, a graph G is a probe graph of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal G}$\end{document} if its vertices can be partitioned into two sets ℙ (the probes) and ℕ (nonprobes), where ℕ is an independent set, such that G can be embedded into a graph of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal G}$\end{document} by adding edges between certain vertices of ℕ. If the partition of the vertices into probes and nonprobes is part of the input, then we call the graph a partitioned probe graph of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal G}$\end{document}. We give the first polynomial-time algorithm for recognizing partitioned probe distance-hereditary graphs. By using a novel data structure for storing a multiset of sets of numbers, the running time of this algorithm is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${O}(\mathfrak\it{n}^2)$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak\it{n}$\end{document} is the number of vertices of the input graph. We also show that the recognition of both partitioned and unpartitioned probe cographs can be done in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${O}(\mathfrak\it{n}^2)$\end{document} time. More... »

PAGES

267-278

### Book

TITLE

Algorithmic Aspects in Information and Management

ISBN

978-3-540-35157-3
978-3-540-35158-0

### Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11775096_25

DOI

http://dx.doi.org/10.1007/11775096_25

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028368901

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Mathematics, Academia Sinica, Nangang, 11529, Taipei, Taiwan",
"id": "http://www.grid.ac/institutes/grid.506925.d",
"name": [
"Institute of Mathematics, Academia Sinica, Nangang, 11529, Taipei, Taiwan"
],
"type": "Organization"
},
"familyName": "Chandler",
"givenName": "David B.",
"id": "sg:person.015431467001.58",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015431467001.58"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science and Information Engineering, National Chung Cheng University, 62107, Chiayi, Taiwan",
"id": "http://www.grid.ac/institutes/grid.412047.4",
"name": [
"Department of Computer Science and Information Engineering, National Chung Cheng University, 62107, Chiayi, Taiwan"
],
"type": "Organization"
},
"familyName": "Chang",
"givenName": "Maw-Shang",
"id": "sg:person.013174232477.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174232477.45"
],
"type": "Person"
},
{
"familyName": "Kloks",
"givenName": "Ton",
"id": "sg:person.011052721431.97",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011052721431.97"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics and Computer Science, The University of Lethbridge, T1K 3M4, Alberta, Canada",
"id": "http://www.grid.ac/institutes/grid.47609.3c",
"name": [
"Department of Mathematics and Computer Science, The University of Lethbridge, T1K 3M4, Alberta, Canada"
],
"type": "Organization"
},
"familyName": "Liu",
"givenName": "Jiping",
"id": "sg:person.012216324536.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012216324536.52"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science and Information Engineering, National Dong Hwa University, 974, Hualien, Taiwan",
"id": "http://www.grid.ac/institutes/grid.260567.0",
"name": [
"Department of Computer Science and Information Engineering, National Dong Hwa University, 974, Hualien, Taiwan"
],
"type": "Organization"
},
"familyName": "Peng",
"givenName": "Sheng-Lung",
"id": "sg:person.013531324035.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013531324035.31"
],
"type": "Person"
}
],
"datePublished": "2006",
"datePublishedReg": "2006-01-01",
"description": "Given a class of graphs \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}${\\cal G}$\\end{document}, a graph G is a probe graph of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}${\\cal G}$\\end{document} if its vertices can be partitioned into two sets \u2119 (the probes) and \u2115 (nonprobes), where \u2115 is an independent set, such that G can be embedded into a graph of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}${\\cal G}$\\end{document} by adding edges between certain vertices of \u2115. If the partition of the vertices into probes and nonprobes is part of the input, then we call the graph a partitioned probe graph of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}${\\cal G}$\\end{document}. We give the first polynomial-time algorithm for recognizing partitioned probe distance-hereditary graphs. By using a novel data structure for storing a multiset of sets of numbers, the running time of this algorithm is \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}${O}(\\mathfrak\\it{n}^2)$\\end{document}, where \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathfrak\\it{n}$\\end{document} is the number of vertices of the input graph. We also show that the recognition of both partitioned and unpartitioned probe cographs can be done in \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}${O}(\\mathfrak\\it{n}^2)$\\end{document} time.",
"editor": [
{
"familyName": "Cheng",
"givenName": "Siu-Wing",
"type": "Person"
},
{
"familyName": "Poon",
"givenName": "Chung Keung",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/11775096_25",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-540-35157-3",
"978-3-540-35158-0"
],
"name": "Algorithmic Aspects in Information and Management",
"type": "Book"
},
"keywords": [
"probe graphs",
"probe cographs",
"first polynomial-time algorithm",
"polynomial-time algorithm",
"novel data structure",
"data structure",
"input graph",
"distance hereditary graphs",
"class of graphs",
"graph",
"certain vertices",
"algorithm",
"distance-hereditary graphs",
"number of vertices",
"hereditary graphs",
"vertices",
"set",
"independent set",
"nonprobes",
"multiset",
"recognition",
"cographs",
"graph G",
"partition",
"input",
"number",
"class",
"edge",
"part",
"time",
"structure",
"probe",
"probe distance-hereditary graphs",
"multiset of sets",
"unpartitioned probe cographs",
"Probe Distance Hereditary Graphs"
],
"name": "Recognition of Probe Cographs and Partitioned Probe Distance Hereditary Graphs",
"pagination": "267-278",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1028368901"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/11775096_25"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/11775096_25",
"https://app.dimensions.ai/details/publication/pub.1028368901"
],
"sdDataset": "chapters",
"sdDatePublished": "2021-11-01T18:49",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_179.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/11775096_25"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11775096_25'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11775096_25'

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11775096_25'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11775096_25'

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      23 PREDICATES      62 URIs      55 LITERALS      7 BLANK NODES

Subject Predicate Object
2 anzsrc-for:0802
3 schema:author N27fb27e4f171481c9dac3a67bcc7f081
4 schema:datePublished 2006
5 schema:datePublishedReg 2006-01-01
6 schema:description Given a class of graphs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal G}$\end{document}, a graph G is a probe graph of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal G}$\end{document} if its vertices can be partitioned into two sets ℙ (the probes) and ℕ (nonprobes), where ℕ is an independent set, such that G can be embedded into a graph of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal G}$\end{document} by adding edges between certain vertices of ℕ. If the partition of the vertices into probes and nonprobes is part of the input, then we call the graph a partitioned probe graph of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal G}$\end{document}. We give the first polynomial-time algorithm for recognizing partitioned probe distance-hereditary graphs. By using a novel data structure for storing a multiset of sets of numbers, the running time of this algorithm is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${O}(\mathfrak\it{n}^2)$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak\it{n}$\end{document} is the number of vertices of the input graph. We also show that the recognition of both partitioned and unpartitioned probe cographs can be done in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${O}(\mathfrak\it{n}^2)$\end{document} time.
7 schema:editor N8e53058428d7400c9bf76251370df4ec
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N63820e488b7943a19e70d99e3d569a19
12 schema:keywords Probe Distance Hereditary Graphs
13 algorithm
14 certain vertices
15 class
16 class of graphs
17 cographs
18 data structure
19 distance hereditary graphs
20 distance-hereditary graphs
21 edge
22 first polynomial-time algorithm
23 graph
24 graph G
25 hereditary graphs
26 independent set
27 input
28 input graph
29 multiset
30 multiset of sets
31 nonprobes
32 novel data structure
33 number
34 number of vertices
35 part
36 partition
37 polynomial-time algorithm
38 probe
39 probe cographs
40 probe distance-hereditary graphs
41 probe graphs
42 recognition
43 set
44 structure
45 time
46 unpartitioned probe cographs
47 vertices
48 schema:name Recognition of Probe Cographs and Partitioned Probe Distance Hereditary Graphs
49 schema:pagination 267-278
50 schema:productId N91031458febe4951a653070a8c91c956
51 Ne7c3f306342a48fcab77eb4efe1cea7a
52 schema:publisher N45fc41a8220a4ef19ff71e4c1b8942c7
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028368901
54 https://doi.org/10.1007/11775096_25
55 schema:sdDatePublished 2021-11-01T18:49
57 schema:sdPublisher N4a9517fc12514b0e84b4a08b33d659ff
58 schema:url https://doi.org/10.1007/11775096_25
60 sgo:sdDataset chapters
61 rdf:type schema:Chapter
62 N084de3862db44d128e733fa133fb32a3 schema:familyName Cheng
63 schema:givenName Siu-Wing
64 rdf:type schema:Person
65 N27fb27e4f171481c9dac3a67bcc7f081 rdf:first sg:person.015431467001.58
66 rdf:rest Naf327ed581fc4fb4a70d4e26aca8ca34
67 N45fc41a8220a4ef19ff71e4c1b8942c7 schema:name Springer Nature
68 rdf:type schema:Organisation
69 N4a9517fc12514b0e84b4a08b33d659ff schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N63820e488b7943a19e70d99e3d569a19 schema:isbn 978-3-540-35157-3
72 978-3-540-35158-0
73 schema:name Algorithmic Aspects in Information and Management
74 rdf:type schema:Book
75 N71f28be7fcb44e428686e4b9ef2e5365 rdf:first Nceb3091f83594f5591f62121ab1cc7ea
76 rdf:rest rdf:nil
77 N848979b7802c43c494edd0e6891826ef rdf:first sg:person.013531324035.31
78 rdf:rest rdf:nil
79 N8e53058428d7400c9bf76251370df4ec rdf:first N084de3862db44d128e733fa133fb32a3
80 rdf:rest N71f28be7fcb44e428686e4b9ef2e5365
81 N91031458febe4951a653070a8c91c956 schema:name dimensions_id
82 schema:value pub.1028368901
83 rdf:type schema:PropertyValue
84 Naf327ed581fc4fb4a70d4e26aca8ca34 rdf:first sg:person.013174232477.45
85 rdf:rest Nb19236e273cb4510a3c180eeb7e7d70b
86 Nb19236e273cb4510a3c180eeb7e7d70b rdf:first sg:person.011052721431.97
87 rdf:rest Nbb57aac1958e47f1b0304a2ae8be9903
88 Nbb57aac1958e47f1b0304a2ae8be9903 rdf:first sg:person.012216324536.52
89 rdf:rest N848979b7802c43c494edd0e6891826ef
90 Nceb3091f83594f5591f62121ab1cc7ea schema:familyName Poon
91 schema:givenName Chung Keung
92 rdf:type schema:Person
93 Ne7c3f306342a48fcab77eb4efe1cea7a schema:name doi
94 schema:value 10.1007/11775096_25
95 rdf:type schema:PropertyValue
96 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
97 schema:name Information and Computing Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
100 schema:name Computation Theory and Mathematics
101 rdf:type schema:DefinedTerm
102 sg:person.011052721431.97 schema:familyName Kloks
103 schema:givenName Ton
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011052721431.97
105 rdf:type schema:Person
106 sg:person.012216324536.52 schema:affiliation grid-institutes:grid.47609.3c
107 schema:familyName Liu
108 schema:givenName Jiping
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012216324536.52
110 rdf:type schema:Person
111 sg:person.013174232477.45 schema:affiliation grid-institutes:grid.412047.4
112 schema:familyName Chang
113 schema:givenName Maw-Shang
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174232477.45
115 rdf:type schema:Person
116 sg:person.013531324035.31 schema:affiliation grid-institutes:grid.260567.0
117 schema:familyName Peng
118 schema:givenName Sheng-Lung
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013531324035.31
120 rdf:type schema:Person
121 sg:person.015431467001.58 schema:affiliation grid-institutes:grid.506925.d
122 schema:familyName Chandler
123 schema:givenName David B.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015431467001.58
125 rdf:type schema:Person
126 grid-institutes:grid.260567.0 schema:alternateName Department of Computer Science and Information Engineering, National Dong Hwa University, 974, Hualien, Taiwan
127 schema:name Department of Computer Science and Information Engineering, National Dong Hwa University, 974, Hualien, Taiwan
128 rdf:type schema:Organization
129 grid-institutes:grid.412047.4 schema:alternateName Department of Computer Science and Information Engineering, National Chung Cheng University, 62107, Chiayi, Taiwan
130 schema:name Department of Computer Science and Information Engineering, National Chung Cheng University, 62107, Chiayi, Taiwan
131 rdf:type schema:Organization
132 grid-institutes:grid.47609.3c schema:alternateName Department of Mathematics and Computer Science, The University of Lethbridge, T1K 3M4, Alberta, Canada
133 schema:name Department of Mathematics and Computer Science, The University of Lethbridge, T1K 3M4, Alberta, Canada
134 rdf:type schema:Organization
135 grid-institutes:grid.506925.d schema:alternateName Institute of Mathematics, Academia Sinica, Nangang, 11529, Taipei, Taiwan
136 schema:name Institute of Mathematics, Academia Sinica, Nangang, 11529, Taipei, Taiwan
137 rdf:type schema:Organization