Reliable and Efficient Geometric Computing View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2006

AUTHORS

Kurt Mehlhorn

ABSTRACT

Reliable implementation of geometric algorithms is a notoriously difficult task. Algorithms are usually designed for the Real-RAM, capable of computing with real numbers in the sense of mathematics, and for non-degenerate inputs. But, real computers are not Real-RAMs and inputs are frequently degenerate.In the first part of the talk we illustrate the pitfalls of geometric computing by way of examples [KMP + 04]. The examples demonstrate in a lucid way that standard and frequently taught algorithms can go completely astray when naively implemented with floating point arithmetic. More... »

PAGES

1-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11758471_1

DOI

http://dx.doi.org/10.1007/11758471_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024209019


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Informatik, Stuhlsatzenhausweg 85, 66123, Saarbr\u00fccken, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419528.3", 
          "name": [
            "Max-Planck-Institut f\u00fcr Informatik, Stuhlsatzenhausweg 85, 66123, Saarbr\u00fccken, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mehlhorn", 
        "givenName": "Kurt", 
        "id": "sg:person.011757371347.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011757371347.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "Reliable implementation of geometric algorithms is a notoriously difficult task. Algorithms are usually designed for the Real-RAM, capable of computing with real numbers in the sense of mathematics, and for non-degenerate inputs. But, real computers are not Real-RAMs and inputs are frequently degenerate.In the first part of the talk we illustrate the pitfalls of geometric computing by way of examples [KMP\u2009+\u200904]. The examples demonstrate in a lucid way that standard and frequently taught algorithms can go completely astray when naively implemented with floating point arithmetic.", 
    "editor": [
      {
        "familyName": "Calamoneri", 
        "givenName": "Tiziana", 
        "type": "Person"
      }, 
      {
        "familyName": "Finocchi", 
        "givenName": "Irene", 
        "type": "Person"
      }, 
      {
        "familyName": "Italiano", 
        "givenName": "Giuseppe F.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11758471_1", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-34375-2", 
        "978-3-540-34378-3"
      ], 
      "name": "Algorithms and Complexity", 
      "type": "Book"
    }, 
    "keywords": [
      "geometric computing", 
      "non-degenerate inputs", 
      "real computer", 
      "geometric algorithms", 
      "real RAM", 
      "sense of mathematics", 
      "real numbers", 
      "computing", 
      "algorithm", 
      "difficult task", 
      "way of example", 
      "reliable implementation", 
      "lucid way", 
      "computer", 
      "mathematics", 
      "input", 
      "task", 
      "first part", 
      "implementation", 
      "way", 
      "example", 
      "point", 
      "standards", 
      "sense", 
      "number", 
      "part", 
      "pitfalls", 
      "talk"
    ], 
    "name": "Reliable and Efficient Geometric Computing", 
    "pagination": "1-2", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024209019"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11758471_1"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11758471_1", 
      "https://app.dimensions.ai/details/publication/pub.1024209019"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_102.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/11758471_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11758471_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11758471_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11758471_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11758471_1'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      22 PREDICATES      54 URIs      46 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11758471_1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0802
4 schema:author N2e81fdd8cc2a40279530c5d1a0484625
5 schema:datePublished 2006
6 schema:datePublishedReg 2006-01-01
7 schema:description Reliable implementation of geometric algorithms is a notoriously difficult task. Algorithms are usually designed for the Real-RAM, capable of computing with real numbers in the sense of mathematics, and for non-degenerate inputs. But, real computers are not Real-RAMs and inputs are frequently degenerate.In the first part of the talk we illustrate the pitfalls of geometric computing by way of examples [KMP + 04]. The examples demonstrate in a lucid way that standard and frequently taught algorithms can go completely astray when naively implemented with floating point arithmetic.
8 schema:editor N55d9a6b07bfe4e2398424448cf111d3c
9 schema:genre chapter
10 schema:isAccessibleForFree false
11 schema:isPartOf N7138e02d71c24711a85e85f57b930986
12 schema:keywords algorithm
13 computer
14 computing
15 difficult task
16 example
17 first part
18 geometric algorithms
19 geometric computing
20 implementation
21 input
22 lucid way
23 mathematics
24 non-degenerate inputs
25 number
26 part
27 pitfalls
28 point
29 real RAM
30 real computer
31 real numbers
32 reliable implementation
33 sense
34 sense of mathematics
35 standards
36 talk
37 task
38 way
39 way of example
40 schema:name Reliable and Efficient Geometric Computing
41 schema:pagination 1-2
42 schema:productId N7dec485b9798422b8e1e7ed6e318a6d3
43 Nafca316ae6df41c79fe3b4a5ba5c52e0
44 schema:publisher Nf54f6dcbf67640e9b1e89ec51c1d0f45
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024209019
46 https://doi.org/10.1007/11758471_1
47 schema:sdDatePublished 2022-10-01T06:52
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nf613535a12424db284775434d23aaede
50 schema:url https://doi.org/10.1007/11758471_1
51 sgo:license sg:explorer/license/
52 sgo:sdDataset chapters
53 rdf:type schema:Chapter
54 N2e81fdd8cc2a40279530c5d1a0484625 rdf:first sg:person.011757371347.43
55 rdf:rest rdf:nil
56 N3c00481efcca47fab3236d6826941cf6 schema:familyName Calamoneri
57 schema:givenName Tiziana
58 rdf:type schema:Person
59 N55d9a6b07bfe4e2398424448cf111d3c rdf:first N3c00481efcca47fab3236d6826941cf6
60 rdf:rest N876e089f2f7542ed9017fd0b245d88bf
61 N7138e02d71c24711a85e85f57b930986 schema:isbn 978-3-540-34375-2
62 978-3-540-34378-3
63 schema:name Algorithms and Complexity
64 rdf:type schema:Book
65 N7dec485b9798422b8e1e7ed6e318a6d3 schema:name dimensions_id
66 schema:value pub.1024209019
67 rdf:type schema:PropertyValue
68 N876e089f2f7542ed9017fd0b245d88bf rdf:first Ne518469f9eb9463c9fd157f5e8e8e882
69 rdf:rest Nf3282c2586714d2a95ebcd60d805755d
70 Nafca316ae6df41c79fe3b4a5ba5c52e0 schema:name doi
71 schema:value 10.1007/11758471_1
72 rdf:type schema:PropertyValue
73 Ne518469f9eb9463c9fd157f5e8e8e882 schema:familyName Finocchi
74 schema:givenName Irene
75 rdf:type schema:Person
76 Nf07ee682018f475b93f7e34f91765963 schema:familyName Italiano
77 schema:givenName Giuseppe F.
78 rdf:type schema:Person
79 Nf3282c2586714d2a95ebcd60d805755d rdf:first Nf07ee682018f475b93f7e34f91765963
80 rdf:rest rdf:nil
81 Nf54f6dcbf67640e9b1e89ec51c1d0f45 schema:name Springer Nature
82 rdf:type schema:Organisation
83 Nf613535a12424db284775434d23aaede schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
86 schema:name Information and Computing Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
89 schema:name Artificial Intelligence and Image Processing
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
92 schema:name Computation Theory and Mathematics
93 rdf:type schema:DefinedTerm
94 sg:person.011757371347.43 schema:affiliation grid-institutes:grid.419528.3
95 schema:familyName Mehlhorn
96 schema:givenName Kurt
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011757371347.43
98 rdf:type schema:Person
99 grid-institutes:grid.419528.3 schema:alternateName Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123, Saarbrücken, Germany
100 schema:name Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123, Saarbrücken, Germany
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...