Inoculating Multivariate Schemes Against Differential Attacks View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2006

AUTHORS

Jintai Ding , Jason E. Gower

ABSTRACT

We demonstrate how to prevent differential attacks on multivariate public key cryptosystems using the Plus (+) method of external perturbation. In particular, we prescribe adding as few as 10 Plus polynomials to the Perturbed Matsumoto-Imai (PMI) cryptosystem when g=1 and r=6, where θ is the Matsumoto-Imai exponent, n is the message length, g = gcd(θ,n), and r is the internal perturbation dimension; or as few as g+10 when g ≠ 1. The external perturbation does not significantly decrease the efficiency of the system, and in fact has the additional benefit of resolving the problem of finding the true plaintext among several preimages of a given ciphertext. We call this new scheme the Perturbed Matsumoto-Imai-Plus (PMI+) cryptosystem. More... »

PAGES

290-301

References to SciGraph publications

Book

TITLE

Public Key Cryptography - PKC 2006

ISBN

978-3-540-33851-2
978-3-540-33852-9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11745853_19

DOI

http://dx.doi.org/10.1007/11745853_19

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020186349


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cincinnati", 
          "id": "https://www.grid.ac/institutes/grid.24827.3b", 
          "name": [
            "Department of Mathematical Sciences, University of Cincinnati, 45221-0025, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Jintai", 
        "id": "sg:person.010723403013.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010723403013.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cincinnati", 
          "id": "https://www.grid.ac/institutes/grid.24827.3b", 
          "name": [
            "Department of Mathematical Sciences, University of Cincinnati, 45221-0025, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gower", 
        "givenName": "Jason E.", 
        "id": "sg:person.012115454065.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012115454065.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-45539-6_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000285811", 
          "https://doi.org/10.1007/3-540-45539-6_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11426639_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019166421", 
          "https://doi.org/10.1007/11426639_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11426639_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019166421", 
          "https://doi.org/10.1007/11426639_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30191-2_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028034053", 
          "https://doi.org/10.1007/978-3-540-30191-2_31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30191-2_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028034053", 
          "https://doi.org/10.1007/978-3-540-30191-2_31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24632-9_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028117877", 
          "https://doi.org/10.1007/978-3-540-24632-9_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11586821_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029183087", 
          "https://doi.org/10.1007/11586821_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11586821_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029183087", 
          "https://doi.org/10.1007/11586821_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30580-4_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032831457", 
          "https://doi.org/10.1007/978-3-540-30580-4_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30580-4_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032831457", 
          "https://doi.org/10.1007/978-3-540-30580-4_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45961-8_39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035601256", 
          "https://doi.org/10.1007/3-540-45961-8_39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-49649-1_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038271412", 
          "https://doi.org/10.1007/3-540-49649-1_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-49649-1_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038271412", 
          "https://doi.org/10.1007/3-540-49649-1_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-4049(99)00005-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040947089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-36288-6_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050959246", 
          "https://doi.org/10.1007/3-540-36288-6_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-44750-4_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051590862", 
          "https://doi.org/10.1007/3-540-44750-4_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-68339-9_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051894160", 
          "https://doi.org/10.1007/3-540-68339-9_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-68339-9_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051894160", 
          "https://doi.org/10.1007/3-540-68339-9_4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "We demonstrate how to prevent differential attacks on multivariate public key cryptosystems using the Plus (+) method of external perturbation. In particular, we prescribe adding as few as 10 Plus polynomials to the Perturbed Matsumoto-Imai (PMI) cryptosystem when g=1 and r=6, where \u03b8 is the Matsumoto-Imai exponent, n is the message length, g = gcd(\u03b8,n), and r is the internal perturbation dimension; or as few as g+10 when g \u2260 1. The external perturbation does not significantly decrease the efficiency of the system, and in fact has the additional benefit of resolving the problem of finding the true plaintext among several preimages of a given ciphertext. We call this new scheme the Perturbed Matsumoto-Imai-Plus (PMI+) cryptosystem.", 
    "editor": [
      {
        "familyName": "Yung", 
        "givenName": "Moti", 
        "type": "Person"
      }, 
      {
        "familyName": "Dodis", 
        "givenName": "Yevgeniy", 
        "type": "Person"
      }, 
      {
        "familyName": "Kiayias", 
        "givenName": "Aggelos", 
        "type": "Person"
      }, 
      {
        "familyName": "Malkin", 
        "givenName": "Tal", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11745853_19", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-33851-2", 
        "978-3-540-33852-9"
      ], 
      "name": "Public Key Cryptography - PKC 2006", 
      "type": "Book"
    }, 
    "name": "Inoculating Multivariate Schemes Against Differential Attacks", 
    "pagination": "290-301", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020186349"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11745853_19"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "602e3f890097ba86af9588354122e9fd1f9730e24696410129650fa0bb7041a9"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11745853_19", 
      "https://app.dimensions.ai/details/publication/pub.1020186349"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57868_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F11745853_19"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11745853_19'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11745853_19'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11745853_19'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11745853_19'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11745853_19 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author Ne1ce8dc134144a55a93868f5031b0285
4 schema:citation sg:pub.10.1007/11426639_20
5 sg:pub.10.1007/11586821_18
6 sg:pub.10.1007/3-540-36288-6_20
7 sg:pub.10.1007/3-540-44750-4_20
8 sg:pub.10.1007/3-540-45539-6_27
9 sg:pub.10.1007/3-540-45961-8_39
10 sg:pub.10.1007/3-540-49649-1_4
11 sg:pub.10.1007/3-540-68339-9_4
12 sg:pub.10.1007/978-3-540-24632-9_22
13 sg:pub.10.1007/978-3-540-30191-2_31
14 sg:pub.10.1007/978-3-540-30580-4_20
15 https://doi.org/10.1016/s0022-4049(99)00005-5
16 schema:datePublished 2006
17 schema:datePublishedReg 2006-01-01
18 schema:description We demonstrate how to prevent differential attacks on multivariate public key cryptosystems using the Plus (+) method of external perturbation. In particular, we prescribe adding as few as 10 Plus polynomials to the Perturbed Matsumoto-Imai (PMI) cryptosystem when g=1 and r=6, where θ is the Matsumoto-Imai exponent, n is the message length, g = gcd(θ,n), and r is the internal perturbation dimension; or as few as g+10 when g ≠ 1. The external perturbation does not significantly decrease the efficiency of the system, and in fact has the additional benefit of resolving the problem of finding the true plaintext among several preimages of a given ciphertext. We call this new scheme the Perturbed Matsumoto-Imai-Plus (PMI+) cryptosystem.
19 schema:editor N8006f535ee904ac9a2a54813f222022d
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf Nca2a009ef5154ab6920993428ff657cc
24 schema:name Inoculating Multivariate Schemes Against Differential Attacks
25 schema:pagination 290-301
26 schema:productId N3d8851ed9a004940b8576c0bf420ca94
27 N6fbeb5c1d6de4b16a190b8aba1f97390
28 N8c60983a18b04ebdb4ad87cf02000b7f
29 schema:publisher N282fd71a8f714f60aa01f3535d6862a8
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020186349
31 https://doi.org/10.1007/11745853_19
32 schema:sdDatePublished 2019-04-16T07:29
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Nea3edb9fdc7343b3a02b929926df5648
35 schema:url https://link.springer.com/10.1007%2F11745853_19
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N282fd71a8f714f60aa01f3535d6862a8 schema:location Berlin, Heidelberg
40 schema:name Springer Berlin Heidelberg
41 rdf:type schema:Organisation
42 N329ead5df8cc40af8e8aa7540fa90d1a schema:familyName Yung
43 schema:givenName Moti
44 rdf:type schema:Person
45 N3d8851ed9a004940b8576c0bf420ca94 schema:name doi
46 schema:value 10.1007/11745853_19
47 rdf:type schema:PropertyValue
48 N4188582d930849148632106f996ee3b9 schema:familyName Malkin
49 schema:givenName Tal
50 rdf:type schema:Person
51 N6fbeb5c1d6de4b16a190b8aba1f97390 schema:name readcube_id
52 schema:value 602e3f890097ba86af9588354122e9fd1f9730e24696410129650fa0bb7041a9
53 rdf:type schema:PropertyValue
54 N8006f535ee904ac9a2a54813f222022d rdf:first N329ead5df8cc40af8e8aa7540fa90d1a
55 rdf:rest Nae4f0d8aca0e470a822c903122e18ef7
56 N8c60983a18b04ebdb4ad87cf02000b7f schema:name dimensions_id
57 schema:value pub.1020186349
58 rdf:type schema:PropertyValue
59 Na51a92b0382a40d0980ec6a264732466 rdf:first sg:person.012115454065.07
60 rdf:rest rdf:nil
61 Nae4f0d8aca0e470a822c903122e18ef7 rdf:first Nc53be981a60047d5b52ffe088e536964
62 rdf:rest Nd3e000fb97ad400a832ec57f00270f8a
63 Nb162833dd5614245bfa9f9e309cda708 rdf:first N4188582d930849148632106f996ee3b9
64 rdf:rest rdf:nil
65 Nc53be981a60047d5b52ffe088e536964 schema:familyName Dodis
66 schema:givenName Yevgeniy
67 rdf:type schema:Person
68 Nca2a009ef5154ab6920993428ff657cc schema:isbn 978-3-540-33851-2
69 978-3-540-33852-9
70 schema:name Public Key Cryptography - PKC 2006
71 rdf:type schema:Book
72 Nd3e000fb97ad400a832ec57f00270f8a rdf:first Nef0ebe1afbb94555baa9d66129d928d4
73 rdf:rest Nb162833dd5614245bfa9f9e309cda708
74 Ne1ce8dc134144a55a93868f5031b0285 rdf:first sg:person.010723403013.04
75 rdf:rest Na51a92b0382a40d0980ec6a264732466
76 Nea3edb9fdc7343b3a02b929926df5648 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Nef0ebe1afbb94555baa9d66129d928d4 schema:familyName Kiayias
79 schema:givenName Aggelos
80 rdf:type schema:Person
81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
82 schema:name Information and Computing Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
85 schema:name Data Format
86 rdf:type schema:DefinedTerm
87 sg:person.010723403013.04 schema:affiliation https://www.grid.ac/institutes/grid.24827.3b
88 schema:familyName Ding
89 schema:givenName Jintai
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010723403013.04
91 rdf:type schema:Person
92 sg:person.012115454065.07 schema:affiliation https://www.grid.ac/institutes/grid.24827.3b
93 schema:familyName Gower
94 schema:givenName Jason E.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012115454065.07
96 rdf:type schema:Person
97 sg:pub.10.1007/11426639_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019166421
98 https://doi.org/10.1007/11426639_20
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/11586821_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029183087
101 https://doi.org/10.1007/11586821_18
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/3-540-36288-6_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050959246
104 https://doi.org/10.1007/3-540-36288-6_20
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/3-540-44750-4_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051590862
107 https://doi.org/10.1007/3-540-44750-4_20
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/3-540-45539-6_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000285811
110 https://doi.org/10.1007/3-540-45539-6_27
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/3-540-45961-8_39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035601256
113 https://doi.org/10.1007/3-540-45961-8_39
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/3-540-49649-1_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038271412
116 https://doi.org/10.1007/3-540-49649-1_4
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/3-540-68339-9_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051894160
119 https://doi.org/10.1007/3-540-68339-9_4
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/978-3-540-24632-9_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028117877
122 https://doi.org/10.1007/978-3-540-24632-9_22
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/978-3-540-30191-2_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028034053
125 https://doi.org/10.1007/978-3-540-30191-2_31
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/978-3-540-30580-4_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032831457
128 https://doi.org/10.1007/978-3-540-30580-4_20
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0022-4049(99)00005-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040947089
131 rdf:type schema:CreativeWork
132 https://www.grid.ac/institutes/grid.24827.3b schema:alternateName University of Cincinnati
133 schema:name Department of Mathematical Sciences, University of Cincinnati, 45221-0025, Cincinnati, OH, USA
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...