Region Covariance: A Fast Descriptor for Detection and Classification View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2006

AUTHORS

Oncel Tuzel , Fatih Porikli , Peter Meer

ABSTRACT

We describe a new region descriptor and apply it to two problems, object detection and texture classification. The covariance of d-features, e.g., the three-dimensional color vector, the norm of first and second derivatives of intensity with respect to x and y, etc., characterizes a region of interest. We describe a fast method for computation of covariances based on integral images. The idea presented here is more general than the image sums or histograms, which were already published before, and with a series of integral images the covariances are obtained by a few arithmetic operations. Covariance matrices do not lie on Euclidean space, therefore we use a distance metric involving generalized eigenvalues which also follows from the Lie group structure of positive definite matrices. Feature matching is a simple nearest neighbor search under the distance metric and performed extremely rapidly using the integral images. The performance of the covariance features is superior to other methods, as it is shown, and large rotations and illumination changes are also absorbed by the covariance matrix. More... »

PAGES

589-600

References to SciGraph publications

Book

TITLE

Computer Vision – ECCV 2006

ISBN

978-3-540-33834-5
978-3-540-33835-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11744047_45

DOI

http://dx.doi.org/10.1007/11744047_45

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007677236


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mitsubishi Electric (United States)", 
          "id": "https://www.grid.ac/institutes/grid.466925.a", 
          "name": [
            "Computer Science Department, USA", 
            "Mitsubishi Electric Research Laboratories, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tuzel", 
        "givenName": "Oncel", 
        "id": "sg:person.01362254313.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362254313.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mitsubishi Electric (United States)", 
          "id": "https://www.grid.ac/institutes/grid.466925.a", 
          "name": [
            "Mitsubishi Electric Research Laboratories, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Porikli", 
        "givenName": "Fatih", 
        "id": "sg:person.0636650213.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636650213.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rutgers University", 
          "id": "https://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Computer Science Department, USA", 
            "Electrical and Computer Engineering Department, Rutgers University, 08854, Piscataway, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meer", 
        "givenName": "Peter", 
        "id": "sg:person.01302754400.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302754400.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1007939232436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044450893", 
          "https://doi.org/10.1023/a:1007939232436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011126920638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046312359", 
          "https://doi.org/10.1023/a:1011126920638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-05296-9_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052329830", 
          "https://doi.org/10.1007/978-3-662-05296-9_31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1977.4309663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052358347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:visi.0000029664.99615.94", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052687286", 
          "https://doi.org/10.1023/b:visi.0000029664.99615.94"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.254061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061155931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2004.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.1991.139758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086328381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2001.990517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093187020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2003.1238382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093204290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093459358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2001.990922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095591703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2000.854761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095616234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095717805"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "We describe a new region descriptor and apply it to two problems, object detection and texture classification. The covariance of d-features, e.g., the three-dimensional color vector, the norm of first and second derivatives of intensity with respect to x and y, etc., characterizes a region of interest. We describe a fast method for computation of covariances based on integral images. The idea presented here is more general than the image sums or histograms, which were already published before, and with a series of integral images the covariances are obtained by a few arithmetic operations. Covariance matrices do not lie on Euclidean space, therefore we use a distance metric involving generalized eigenvalues which also follows from the Lie group structure of positive definite matrices. Feature matching is a simple nearest neighbor search under the distance metric and performed extremely rapidly using the integral images. The performance of the covariance features is superior to other methods, as it is shown, and large rotations and illumination changes are also absorbed by the covariance matrix.", 
    "editor": [
      {
        "familyName": "Leonardis", 
        "givenName": "Ale\u0161", 
        "type": "Person"
      }, 
      {
        "familyName": "Bischof", 
        "givenName": "Horst", 
        "type": "Person"
      }, 
      {
        "familyName": "Pinz", 
        "givenName": "Axel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11744047_45", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-33834-5", 
        "978-3-540-33835-2"
      ], 
      "name": "Computer Vision \u2013 ECCV 2006", 
      "type": "Book"
    }, 
    "name": "Region Covariance: A Fast Descriptor for Detection and Classification", 
    "pagination": "589-600", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007677236"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11744047_45"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2491c35e13d72c5057dbe3b661b192b08f913c39519b16b7c19d086973010ae6"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11744047_45", 
      "https://app.dimensions.ai/details/publication/pub.1007677236"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57889_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F11744047_45"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11744047_45'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11744047_45'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11744047_45'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11744047_45'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11744047_45 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Na303f3112c4748e5a7346c30301d361d
4 schema:citation sg:pub.10.1007/978-3-662-05296-9_31
5 sg:pub.10.1023/a:1007939232436
6 sg:pub.10.1023/a:1011126920638
7 sg:pub.10.1023/b:visi.0000029664.99615.94
8 https://doi.org/10.1109/34.254061
9 https://doi.org/10.1109/cvpr.1991.139758
10 https://doi.org/10.1109/cvpr.2000.854761
11 https://doi.org/10.1109/cvpr.2001.990517
12 https://doi.org/10.1109/cvpr.2001.990922
13 https://doi.org/10.1109/cvpr.2005.188
14 https://doi.org/10.1109/cvpr.2005.287
15 https://doi.org/10.1109/iccv.2003.1238382
16 https://doi.org/10.1109/tpami.2004.2
17 https://doi.org/10.1109/tsmc.1977.4309663
18 schema:datePublished 2006
19 schema:datePublishedReg 2006-01-01
20 schema:description We describe a new region descriptor and apply it to two problems, object detection and texture classification. The covariance of d-features, e.g., the three-dimensional color vector, the norm of first and second derivatives of intensity with respect to x and y, etc., characterizes a region of interest. We describe a fast method for computation of covariances based on integral images. The idea presented here is more general than the image sums or histograms, which were already published before, and with a series of integral images the covariances are obtained by a few arithmetic operations. Covariance matrices do not lie on Euclidean space, therefore we use a distance metric involving generalized eigenvalues which also follows from the Lie group structure of positive definite matrices. Feature matching is a simple nearest neighbor search under the distance metric and performed extremely rapidly using the integral images. The performance of the covariance features is superior to other methods, as it is shown, and large rotations and illumination changes are also absorbed by the covariance matrix.
21 schema:editor N9270d6585d824a7094c8b4a660609944
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf Naffc2bcd8929427887fc7b6c849eee6d
26 schema:name Region Covariance: A Fast Descriptor for Detection and Classification
27 schema:pagination 589-600
28 schema:productId N01c396f862674ba89bf16fcbd3ee41c0
29 N6a52c9355c8c48ba94ce8db4a10cbfda
30 Nfcc40c11dca14996905310269672d456
31 schema:publisher Na57f5585f27644ec8efd5f6a9b16e80f
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007677236
33 https://doi.org/10.1007/11744047_45
34 schema:sdDatePublished 2019-04-16T07:31
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N8f5b9684b7784d82975a8f90eef89a35
37 schema:url https://link.springer.com/10.1007%2F11744047_45
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N01c396f862674ba89bf16fcbd3ee41c0 schema:name doi
42 schema:value 10.1007/11744047_45
43 rdf:type schema:PropertyValue
44 N24cd7a3e280447ec8578ebc668e9a271 rdf:first Ncb062cfde76c411a9e97deac514d1bab
45 rdf:rest rdf:nil
46 N6a52c9355c8c48ba94ce8db4a10cbfda schema:name dimensions_id
47 schema:value pub.1007677236
48 rdf:type schema:PropertyValue
49 N6f594b45bdb9429e9e50ec11e8c7c265 schema:familyName Leonardis
50 schema:givenName Aleš
51 rdf:type schema:Person
52 N79be372daf1b4c7b89a1eaefc190f5fd rdf:first Neb38295d14e1403696f1b5f05bde1ad2
53 rdf:rest N24cd7a3e280447ec8578ebc668e9a271
54 N7d59b638474c4b809edad8a694e0ba1e rdf:first sg:person.01302754400.24
55 rdf:rest rdf:nil
56 N8f5b9684b7784d82975a8f90eef89a35 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N9270d6585d824a7094c8b4a660609944 rdf:first N6f594b45bdb9429e9e50ec11e8c7c265
59 rdf:rest N79be372daf1b4c7b89a1eaefc190f5fd
60 Na303f3112c4748e5a7346c30301d361d rdf:first sg:person.01362254313.69
61 rdf:rest Nab83f35084e44df89c7cbecee9e47579
62 Na57f5585f27644ec8efd5f6a9b16e80f schema:location Berlin, Heidelberg
63 schema:name Springer Berlin Heidelberg
64 rdf:type schema:Organisation
65 Nab83f35084e44df89c7cbecee9e47579 rdf:first sg:person.0636650213.92
66 rdf:rest N7d59b638474c4b809edad8a694e0ba1e
67 Naffc2bcd8929427887fc7b6c849eee6d schema:isbn 978-3-540-33834-5
68 978-3-540-33835-2
69 schema:name Computer Vision – ECCV 2006
70 rdf:type schema:Book
71 Ncb062cfde76c411a9e97deac514d1bab schema:familyName Pinz
72 schema:givenName Axel
73 rdf:type schema:Person
74 Neb38295d14e1403696f1b5f05bde1ad2 schema:familyName Bischof
75 schema:givenName Horst
76 rdf:type schema:Person
77 Nfcc40c11dca14996905310269672d456 schema:name readcube_id
78 schema:value 2491c35e13d72c5057dbe3b661b192b08f913c39519b16b7c19d086973010ae6
79 rdf:type schema:PropertyValue
80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
81 schema:name Information and Computing Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
84 schema:name Artificial Intelligence and Image Processing
85 rdf:type schema:DefinedTerm
86 sg:person.01302754400.24 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
87 schema:familyName Meer
88 schema:givenName Peter
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302754400.24
90 rdf:type schema:Person
91 sg:person.01362254313.69 schema:affiliation https://www.grid.ac/institutes/grid.466925.a
92 schema:familyName Tuzel
93 schema:givenName Oncel
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362254313.69
95 rdf:type schema:Person
96 sg:person.0636650213.92 schema:affiliation https://www.grid.ac/institutes/grid.466925.a
97 schema:familyName Porikli
98 schema:givenName Fatih
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636650213.92
100 rdf:type schema:Person
101 sg:pub.10.1007/978-3-662-05296-9_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052329830
102 https://doi.org/10.1007/978-3-662-05296-9_31
103 rdf:type schema:CreativeWork
104 sg:pub.10.1023/a:1007939232436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044450893
105 https://doi.org/10.1023/a:1007939232436
106 rdf:type schema:CreativeWork
107 sg:pub.10.1023/a:1011126920638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046312359
108 https://doi.org/10.1023/a:1011126920638
109 rdf:type schema:CreativeWork
110 sg:pub.10.1023/b:visi.0000029664.99615.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052687286
111 https://doi.org/10.1023/b:visi.0000029664.99615.94
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/34.254061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061155931
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/cvpr.1991.139758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086328381
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/cvpr.2000.854761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095616234
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/cvpr.2001.990517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093187020
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/cvpr.2001.990922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095591703
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/cvpr.2005.188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095717805
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/cvpr.2005.287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093459358
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/iccv.2003.1238382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093204290
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/tpami.2004.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742707
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/tsmc.1977.4309663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052358347
132 rdf:type schema:CreativeWork
133 https://www.grid.ac/institutes/grid.430387.b schema:alternateName Rutgers University
134 schema:name Computer Science Department, USA
135 Electrical and Computer Engineering Department, Rutgers University, 08854, Piscataway, NJ, USA
136 rdf:type schema:Organization
137 https://www.grid.ac/institutes/grid.466925.a schema:alternateName Mitsubishi Electric (United States)
138 schema:name Computer Science Department, USA
139 Mitsubishi Electric Research Laboratories, 02139, Cambridge, MA, USA
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...