Detecting Symmetry and Symmetric Constellations of Features View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2006

AUTHORS

Gareth Loy , Jan-Olof Eklundh

ABSTRACT

A novel and efficient method is presented for grouping feature points on the basis of their underlying symmetry and characterising the symmetries present in an image. We show how symmetric pairs of features can be efficiently detected, how the symmetry bonding each pair is extracted and evaluated, and how these can be grouped into symmetric constellations that specify the dominant symmetries present in the image. Symmetries over all orientations and radii are considered simultaneously, and the method is able to detect local or global symmetries, locate symmetric figures in complex backgrounds, detect bilateral or rotational symmetry, and detect multiple incidences of symmetry. More... »

PAGES

508-521

Book

TITLE

Computer Vision – ECCV 2006

ISBN

978-3-540-33834-5
978-3-540-33835-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11744047_39

DOI

http://dx.doi.org/10.1007/11744047_39

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035504933


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computational Vision & Active Perception Laboratory, Royal Institute of Technology (KTH), Sweden", 
          "id": "http://www.grid.ac/institutes/grid.5037.1", 
          "name": [
            "Computational Vision & Active Perception Laboratory, Royal Institute of Technology (KTH), Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Loy", 
        "givenName": "Gareth", 
        "id": "sg:person.012452311507.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012452311507.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computational Vision & Active Perception Laboratory, Royal Institute of Technology (KTH), Sweden", 
          "id": "http://www.grid.ac/institutes/grid.5037.1", 
          "name": [
            "Computational Vision & Active Perception Laboratory, Royal Institute of Technology (KTH), Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eklundh", 
        "givenName": "Jan-Olof", 
        "id": "sg:person.014400652155.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014400652155.17"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "A novel and efficient method is presented for grouping feature points on the basis of their underlying symmetry and characterising the symmetries present in an image. We show how symmetric pairs of features can be efficiently detected, how the symmetry bonding each pair is extracted and evaluated, and how these can be grouped into symmetric constellations that specify the dominant symmetries present in the image. Symmetries over all orientations and radii are considered simultaneously, and the method is able to detect local or global symmetries, locate symmetric figures in complex backgrounds, detect bilateral or rotational symmetry, and detect multiple incidences of symmetry.", 
    "editor": [
      {
        "familyName": "Leonardis", 
        "givenName": "Ale\u0161", 
        "type": "Person"
      }, 
      {
        "familyName": "Bischof", 
        "givenName": "Horst", 
        "type": "Person"
      }, 
      {
        "familyName": "Pinz", 
        "givenName": "Axel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11744047_39", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-33834-5", 
        "978-3-540-33835-2"
      ], 
      "name": "Computer Vision \u2013 ECCV 2006", 
      "type": "Book"
    }, 
    "keywords": [
      "global symmetry", 
      "symmetric constellation", 
      "rotational symmetry", 
      "symmetry", 
      "symmetric pairs", 
      "symmetric figures", 
      "dominant symmetry", 
      "efficient method", 
      "feature points", 
      "radius", 
      "pairs", 
      "point", 
      "features", 
      "complex background", 
      "constellation", 
      "orientation", 
      "multiple incidences", 
      "basis", 
      "images", 
      "figures", 
      "background", 
      "incidence", 
      "method"
    ], 
    "name": "Detecting Symmetry and Symmetric Constellations of Features", 
    "pagination": "508-521", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035504933"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11744047_39"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11744047_39", 
      "https://app.dimensions.ai/details/publication/pub.1035504933"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_297.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/11744047_39"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11744047_39'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11744047_39'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11744047_39'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11744047_39'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      22 PREDICATES      48 URIs      41 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11744047_39 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N131a1155f0d34c58859a289efc16ca36
4 schema:datePublished 2006
5 schema:datePublishedReg 2006-01-01
6 schema:description A novel and efficient method is presented for grouping feature points on the basis of their underlying symmetry and characterising the symmetries present in an image. We show how symmetric pairs of features can be efficiently detected, how the symmetry bonding each pair is extracted and evaluated, and how these can be grouped into symmetric constellations that specify the dominant symmetries present in the image. Symmetries over all orientations and radii are considered simultaneously, and the method is able to detect local or global symmetries, locate symmetric figures in complex backgrounds, detect bilateral or rotational symmetry, and detect multiple incidences of symmetry.
7 schema:editor N094e495354f545ecac9118d240c73ac1
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N33783110498b484abaa7f4cd262896f6
11 schema:keywords background
12 basis
13 complex background
14 constellation
15 dominant symmetry
16 efficient method
17 feature points
18 features
19 figures
20 global symmetry
21 images
22 incidence
23 method
24 multiple incidences
25 orientation
26 pairs
27 point
28 radius
29 rotational symmetry
30 symmetric constellation
31 symmetric figures
32 symmetric pairs
33 symmetry
34 schema:name Detecting Symmetry and Symmetric Constellations of Features
35 schema:pagination 508-521
36 schema:productId N480a509993e549d8a2161fcaba3d8b04
37 Nfc96c607ab0b4e1b912d1bcda062ee9f
38 schema:publisher N0998d27a57ea48c38ebf1c11ae128b0e
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035504933
40 https://doi.org/10.1007/11744047_39
41 schema:sdDatePublished 2022-12-01T06:50
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N98ecd93025e841438614ab099eeaa81b
44 schema:url https://doi.org/10.1007/11744047_39
45 sgo:license sg:explorer/license/
46 sgo:sdDataset chapters
47 rdf:type schema:Chapter
48 N094e495354f545ecac9118d240c73ac1 rdf:first Nf16d01b4ac42455ca5b3c1445466af1e
49 rdf:rest Nea9b80149f7641b195e91d53ff8976e6
50 N0998d27a57ea48c38ebf1c11ae128b0e schema:name Springer Nature
51 rdf:type schema:Organisation
52 N131a1155f0d34c58859a289efc16ca36 rdf:first sg:person.012452311507.45
53 rdf:rest N8390d3122c554abbbd94f52cf57cb7ec
54 N1e22b655b8cc4705a205cdc40a2e1c63 schema:familyName Bischof
55 schema:givenName Horst
56 rdf:type schema:Person
57 N33783110498b484abaa7f4cd262896f6 schema:isbn 978-3-540-33834-5
58 978-3-540-33835-2
59 schema:name Computer Vision – ECCV 2006
60 rdf:type schema:Book
61 N37858de73d864001ba9bb314571809be rdf:first Nb68e2f70f5514a55ab8a1c4a20e615da
62 rdf:rest rdf:nil
63 N480a509993e549d8a2161fcaba3d8b04 schema:name doi
64 schema:value 10.1007/11744047_39
65 rdf:type schema:PropertyValue
66 N8390d3122c554abbbd94f52cf57cb7ec rdf:first sg:person.014400652155.17
67 rdf:rest rdf:nil
68 N98ecd93025e841438614ab099eeaa81b schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Nb68e2f70f5514a55ab8a1c4a20e615da schema:familyName Pinz
71 schema:givenName Axel
72 rdf:type schema:Person
73 Nea9b80149f7641b195e91d53ff8976e6 rdf:first N1e22b655b8cc4705a205cdc40a2e1c63
74 rdf:rest N37858de73d864001ba9bb314571809be
75 Nf16d01b4ac42455ca5b3c1445466af1e schema:familyName Leonardis
76 schema:givenName Aleš
77 rdf:type schema:Person
78 Nfc96c607ab0b4e1b912d1bcda062ee9f schema:name dimensions_id
79 schema:value pub.1035504933
80 rdf:type schema:PropertyValue
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
85 schema:name Pure Mathematics
86 rdf:type schema:DefinedTerm
87 sg:person.012452311507.45 schema:affiliation grid-institutes:grid.5037.1
88 schema:familyName Loy
89 schema:givenName Gareth
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012452311507.45
91 rdf:type schema:Person
92 sg:person.014400652155.17 schema:affiliation grid-institutes:grid.5037.1
93 schema:familyName Eklundh
94 schema:givenName Jan-Olof
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014400652155.17
96 rdf:type schema:Person
97 grid-institutes:grid.5037.1 schema:alternateName Computational Vision & Active Perception Laboratory, Royal Institute of Technology (KTH), Sweden
98 schema:name Computational Vision & Active Perception Laboratory, Royal Institute of Technology (KTH), Sweden
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...