An Immunological Algorithm for Global Numerical Optimization View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2006

AUTHORS

Vincenzo Cutello , Giuseppe Narzisi , Giuseppe Nicosia , Mario Pavone

ABSTRACT

Numerical optimization of given objective functions is a crucial task in many real-life problems. The present article introduces an immunological algorithm for continuous global optimization problems, called opt-IA. Several biologically inspired algorithms have been designed during the last few years and have shown to have very good performance on standard test bed for numerical optimization.In this paper we assess and evaluate the performance of opt-IA, FEP, IFEP, DIRECT, CEP, PSO, and EO with respect to their general applicability as numerical optimization algorithms. The experimental protocol has been performed on a suite of 23 widely used benchmarks problems. The experimental results show that opt-IA is a suitable numerical optimization technique that, in terms of accuracy, generally outperforms the other algorithms analyzed in this comparative study. The opt-IA is also shown to be able to solve large-scale problems. More... »

PAGES

284-295

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11740698_25

DOI

http://dx.doi.org/10.1007/11740698_25

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011160632


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8158.4", 
          "name": [
            "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cutello", 
        "givenName": "Vincenzo", 
        "id": "sg:person.013504603243.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013504603243.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8158.4", 
          "name": [
            "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Narzisi", 
        "givenName": "Giuseppe", 
        "id": "sg:person.0711426725.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711426725.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8158.4", 
          "name": [
            "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nicosia", 
        "givenName": "Giuseppe", 
        "id": "sg:person.0742061443.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742061443.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8158.4", 
          "name": [
            "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pavone", 
        "givenName": "Mario", 
        "id": "sg:person.07350620665.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07350620665.82"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "Numerical optimization of given objective functions is a crucial task in many real-life problems. The present article introduces an immunological algorithm for continuous global optimization problems, called opt-IA. Several biologically inspired algorithms have been designed during the last few years and have shown to have very good performance on standard test bed for numerical optimization.In this paper we assess and evaluate the performance of opt-IA, FEP, IFEP, DIRECT, CEP, PSO, and EO with respect to their general applicability as numerical optimization algorithms. The experimental protocol has been performed on a suite of 23 widely used benchmarks problems. The experimental results show that opt-IA is a suitable numerical optimization technique that, in terms of accuracy, generally outperforms the other algorithms analyzed in this comparative study. The opt-IA is also shown to be able to solve large-scale problems.", 
    "editor": [
      {
        "familyName": "Talbi", 
        "givenName": "El-Ghazali", 
        "type": "Person"
      }, 
      {
        "familyName": "Liardet", 
        "givenName": "Pierre", 
        "type": "Person"
      }, 
      {
        "familyName": "Collet", 
        "givenName": "Pierre", 
        "type": "Person"
      }, 
      {
        "familyName": "Lutton", 
        "givenName": "Evelyne", 
        "type": "Person"
      }, 
      {
        "familyName": "Schoenauer", 
        "givenName": "Marc", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11740698_25", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-33589-4", 
        "978-3-540-33590-0"
      ], 
      "name": "Artificial Evolution", 
      "type": "Book"
    }, 
    "keywords": [
      "numerical optimization", 
      "continuous global optimization problems", 
      "immunological algorithm", 
      "global optimization problems", 
      "numerical optimization algorithm", 
      "large-scale problems", 
      "global numerical optimization", 
      "Opt-IA", 
      "numerical optimization techniques", 
      "optimization problem", 
      "real-life problems", 
      "benchmark problems", 
      "optimization techniques", 
      "optimization algorithm", 
      "objective function", 
      "terms of accuracy", 
      "optimization", 
      "algorithm", 
      "problem", 
      "general applicability", 
      "standard test bed", 
      "IFEP", 
      "better performance", 
      "test bed", 
      "experimental results", 
      "PSO", 
      "crucial task", 
      "applicability", 
      "accuracy", 
      "performance", 
      "present article", 
      "terms", 
      "function", 
      "EO", 
      "technique", 
      "respect", 
      "comparative study", 
      "IA", 
      "results", 
      "suite", 
      "experimental protocol", 
      "CEP", 
      "task", 
      "article", 
      "FEP", 
      "protocol", 
      "bed", 
      "Direct", 
      "study", 
      "years", 
      "paper"
    ], 
    "name": "An Immunological Algorithm for Global Numerical Optimization", 
    "pagination": "284-295", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011160632"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11740698_25"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11740698_25", 
      "https://app.dimensions.ai/details/publication/pub.1011160632"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_32.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/11740698_25"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11740698_25'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11740698_25'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11740698_25'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11740698_25'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      23 PREDICATES      78 URIs      70 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11740698_25 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0103
4 schema:author N2ea1002483a144b8a47666c4a3e1638e
5 schema:datePublished 2006
6 schema:datePublishedReg 2006-01-01
7 schema:description Numerical optimization of given objective functions is a crucial task in many real-life problems. The present article introduces an immunological algorithm for continuous global optimization problems, called opt-IA. Several biologically inspired algorithms have been designed during the last few years and have shown to have very good performance on standard test bed for numerical optimization.In this paper we assess and evaluate the performance of opt-IA, FEP, IFEP, DIRECT, CEP, PSO, and EO with respect to their general applicability as numerical optimization algorithms. The experimental protocol has been performed on a suite of 23 widely used benchmarks problems. The experimental results show that opt-IA is a suitable numerical optimization technique that, in terms of accuracy, generally outperforms the other algorithms analyzed in this comparative study. The opt-IA is also shown to be able to solve large-scale problems.
8 schema:editor Nd165ab0e3b174531b27a680c1a1754ab
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Na8a2e84fdf0a4de8a93b131795ddb398
13 schema:keywords CEP
14 Direct
15 EO
16 FEP
17 IA
18 IFEP
19 Opt-IA
20 PSO
21 accuracy
22 algorithm
23 applicability
24 article
25 bed
26 benchmark problems
27 better performance
28 comparative study
29 continuous global optimization problems
30 crucial task
31 experimental protocol
32 experimental results
33 function
34 general applicability
35 global numerical optimization
36 global optimization problems
37 immunological algorithm
38 large-scale problems
39 numerical optimization
40 numerical optimization algorithm
41 numerical optimization techniques
42 objective function
43 optimization
44 optimization algorithm
45 optimization problem
46 optimization techniques
47 paper
48 performance
49 present article
50 problem
51 protocol
52 real-life problems
53 respect
54 results
55 standard test bed
56 study
57 suite
58 task
59 technique
60 terms
61 terms of accuracy
62 test bed
63 years
64 schema:name An Immunological Algorithm for Global Numerical Optimization
65 schema:pagination 284-295
66 schema:productId Nad8f2035a5d24c61b1427095bee77c22
67 Nd3524ed7976b4dc1b921a20849794782
68 schema:publisher N53dc39bf0c46469886815b731aed2417
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011160632
70 https://doi.org/10.1007/11740698_25
71 schema:sdDatePublished 2022-05-20T07:46
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N7548f79dc25e4c549ad91bb809f9cdc7
74 schema:url https://doi.org/10.1007/11740698_25
75 sgo:license sg:explorer/license/
76 sgo:sdDataset chapters
77 rdf:type schema:Chapter
78 N28b0192025ee4ea885f5d5c32c21ce82 rdf:first Nedb4abd273874944842e445a85560b0a
79 rdf:rest Nbc5cb767d7404150b5286cceec2f64d6
80 N2ea1002483a144b8a47666c4a3e1638e rdf:first sg:person.013504603243.51
81 rdf:rest N33363c362bc241a0a9cdfcac9ccf5553
82 N33363c362bc241a0a9cdfcac9ccf5553 rdf:first sg:person.0711426725.34
83 rdf:rest Nff53f1a3687748d1b3d86754c6dfef77
84 N4875ef0f11ec4bd5818f387a8fb1ce16 rdf:first N6e383cab2c1740639a7b40142cea7e76
85 rdf:rest Nb20183f547dc436099ebd72169aad59c
86 N53dc39bf0c46469886815b731aed2417 schema:name Springer Nature
87 rdf:type schema:Organisation
88 N6e383cab2c1740639a7b40142cea7e76 schema:familyName Liardet
89 schema:givenName Pierre
90 rdf:type schema:Person
91 N7548f79dc25e4c549ad91bb809f9cdc7 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N8cc4792d6ac448ae9d5eb2706164a80d rdf:first sg:person.07350620665.82
94 rdf:rest rdf:nil
95 Na8a2e84fdf0a4de8a93b131795ddb398 schema:isbn 978-3-540-33589-4
96 978-3-540-33590-0
97 schema:name Artificial Evolution
98 rdf:type schema:Book
99 Nad8f2035a5d24c61b1427095bee77c22 schema:name dimensions_id
100 schema:value pub.1011160632
101 rdf:type schema:PropertyValue
102 Nb20183f547dc436099ebd72169aad59c rdf:first Nb8543ab413024444a1c86e7b122abf75
103 rdf:rest N28b0192025ee4ea885f5d5c32c21ce82
104 Nb8543ab413024444a1c86e7b122abf75 schema:familyName Collet
105 schema:givenName Pierre
106 rdf:type schema:Person
107 Nbc5cb767d7404150b5286cceec2f64d6 rdf:first Ncf9b7f9989794851965e298bd69edcf0
108 rdf:rest rdf:nil
109 Ncf9b7f9989794851965e298bd69edcf0 schema:familyName Schoenauer
110 schema:givenName Marc
111 rdf:type schema:Person
112 Nd165ab0e3b174531b27a680c1a1754ab rdf:first Ne22d7bacf08e4bc1a5dbf574ee044ebb
113 rdf:rest N4875ef0f11ec4bd5818f387a8fb1ce16
114 Nd3524ed7976b4dc1b921a20849794782 schema:name doi
115 schema:value 10.1007/11740698_25
116 rdf:type schema:PropertyValue
117 Ne22d7bacf08e4bc1a5dbf574ee044ebb schema:familyName Talbi
118 schema:givenName El-Ghazali
119 rdf:type schema:Person
120 Nedb4abd273874944842e445a85560b0a schema:familyName Lutton
121 schema:givenName Evelyne
122 rdf:type schema:Person
123 Nff53f1a3687748d1b3d86754c6dfef77 rdf:first sg:person.0742061443.97
124 rdf:rest N8cc4792d6ac448ae9d5eb2706164a80d
125 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
126 schema:name Mathematical Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
129 schema:name Applied Mathematics
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
132 schema:name Numerical and Computational Mathematics
133 rdf:type schema:DefinedTerm
134 sg:person.013504603243.51 schema:affiliation grid-institutes:grid.8158.4
135 schema:familyName Cutello
136 schema:givenName Vincenzo
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013504603243.51
138 rdf:type schema:Person
139 sg:person.0711426725.34 schema:affiliation grid-institutes:grid.8158.4
140 schema:familyName Narzisi
141 schema:givenName Giuseppe
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711426725.34
143 rdf:type schema:Person
144 sg:person.07350620665.82 schema:affiliation grid-institutes:grid.8158.4
145 schema:familyName Pavone
146 schema:givenName Mario
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07350620665.82
148 rdf:type schema:Person
149 sg:person.0742061443.97 schema:affiliation grid-institutes:grid.8158.4
150 schema:familyName Nicosia
151 schema:givenName Giuseppe
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742061443.97
153 rdf:type schema:Person
154 grid-institutes:grid.8158.4 schema:alternateName Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
155 schema:name Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...