Soft Rank Clustering View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2006

AUTHORS

Stefano Rovetta , Francesco Masulli , Maurizio Filippone

ABSTRACT

Clustering methods provide an useful tool to tackle the problem of exploring large-dimensional data. However many common approaches suffer from being applied in high-dimensional spaces. Building on a dissimilarity-based representation of data, we propose a dimensionality reduction technique which preserves the clustering structure of the data. The technique is designed for cases in which data dimensionality is large compared to the number of available observations. In these cases, we represent data in the space of soft D-ranks, by applying the concept of fuzzy ranking. A clustering procedure is then applied. Experimental results show that the method is able to retain the necessary information, while considerably reducing dimensionality. More... »

PAGES

207-213

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11731177_29

DOI

http://dx.doi.org/10.1007/11731177_29

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051607576


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Unit\u00e0 di Genova, Istituto Nazionale per la Fisica della Materia, Via Dodecaneso, 33, I -16146, Genova, Italy", 
          "id": "http://www.grid.ac/institutes/grid.157869.4", 
          "name": [
            "Dipartimento di Informatica e Scienze dell\u2019Informazione, Universit\u00e0 di Genova, Via Dodecaneso, 35, I -16146, Genova, Italy", 
            "Unit\u00e0 di Genova, Istituto Nazionale per la Fisica della Materia, Via Dodecaneso, 33, I -16146, Genova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rovetta", 
        "givenName": "Stefano", 
        "id": "sg:person.015767137221.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015767137221.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Informatica, Universit\u00e0 di Pisa, Largo B. Pontecorvo, 3, I-56127, Pisa, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5395.a", 
          "name": [
            "Unit\u00e0 di Genova, Istituto Nazionale per la Fisica della Materia, Via Dodecaneso, 33, I -16146, Genova, Italy", 
            "Dipartimento di Informatica, Universit\u00e0 di Pisa, Largo B. Pontecorvo, 3, I-56127, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Masulli", 
        "givenName": "Francesco", 
        "id": "sg:person.013052261502.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013052261502.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Unit\u00e0 di Genova, Istituto Nazionale per la Fisica della Materia, Via Dodecaneso, 33, I -16146, Genova, Italy", 
          "id": "http://www.grid.ac/institutes/grid.157869.4", 
          "name": [
            "Dipartimento di Informatica e Scienze dell\u2019Informazione, Universit\u00e0 di Genova, Via Dodecaneso, 35, I -16146, Genova, Italy", 
            "Unit\u00e0 di Genova, Istituto Nazionale per la Fisica della Materia, Via Dodecaneso, 33, I -16146, Genova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Filippone", 
        "givenName": "Maurizio", 
        "id": "sg:person.07706215665.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706215665.03"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "Clustering methods provide an useful tool to tackle the problem of exploring large-dimensional data. However many common approaches suffer from being applied in high-dimensional spaces. Building on a dissimilarity-based representation of data, we propose a dimensionality reduction technique which preserves the clustering structure of the data. The technique is designed for cases in which data dimensionality is large compared to the number of available observations. In these cases, we represent data in the space of soft D-ranks, by applying the concept of fuzzy ranking. A clustering procedure is then applied. Experimental results show that the method is able to retain the necessary information, while considerably reducing dimensionality.", 
    "editor": [
      {
        "familyName": "Apolloni", 
        "givenName": "Bruno", 
        "type": "Person"
      }, 
      {
        "familyName": "Marinaro", 
        "givenName": "Maria", 
        "type": "Person"
      }, 
      {
        "familyName": "Nicosia", 
        "givenName": "Giuseppe", 
        "type": "Person"
      }, 
      {
        "familyName": "Tagliaferri", 
        "givenName": "Roberto", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11731177_29", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-33183-4", 
        "978-3-540-33184-1"
      ], 
      "name": "Neural Nets", 
      "type": "Book"
    }, 
    "keywords": [
      "large-dimensional data", 
      "high-dimensional space", 
      "dissimilarity-based representation", 
      "dimensionality reduction techniques", 
      "data dimensionality", 
      "fuzzy ranking", 
      "necessary information", 
      "experimental results", 
      "common approach", 
      "reduction techniques", 
      "dimensionality", 
      "clustering", 
      "space", 
      "technique", 
      "available observations", 
      "representation", 
      "information", 
      "data", 
      "ranking", 
      "tool", 
      "method", 
      "concept", 
      "problem", 
      "useful tool", 
      "rank", 
      "number", 
      "approach", 
      "results", 
      "cases", 
      "procedure", 
      "structure", 
      "observations", 
      "Soft Rank Clustering", 
      "Rank Clustering"
    ], 
    "name": "Soft Rank Clustering", 
    "pagination": "207-213", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051607576"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11731177_29"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11731177_29", 
      "https://app.dimensions.ai/details/publication/pub.1051607576"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_44.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/11731177_29"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11731177_29'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11731177_29'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11731177_29'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11731177_29'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      23 PREDICATES      59 URIs      52 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11731177_29 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd9666c37c44b4747983a90b8dc0136ee
4 schema:datePublished 2006
5 schema:datePublishedReg 2006-01-01
6 schema:description Clustering methods provide an useful tool to tackle the problem of exploring large-dimensional data. However many common approaches suffer from being applied in high-dimensional spaces. Building on a dissimilarity-based representation of data, we propose a dimensionality reduction technique which preserves the clustering structure of the data. The technique is designed for cases in which data dimensionality is large compared to the number of available observations. In these cases, we represent data in the space of soft D-ranks, by applying the concept of fuzzy ranking. A clustering procedure is then applied. Experimental results show that the method is able to retain the necessary information, while considerably reducing dimensionality.
7 schema:editor N7d5f5e301dd74bf18255080d91964f85
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N075e2a94dd5a4629a5fc57774d3468f3
12 schema:keywords Rank Clustering
13 Soft Rank Clustering
14 approach
15 available observations
16 cases
17 clustering
18 common approach
19 concept
20 data
21 data dimensionality
22 dimensionality
23 dimensionality reduction techniques
24 dissimilarity-based representation
25 experimental results
26 fuzzy ranking
27 high-dimensional space
28 information
29 large-dimensional data
30 method
31 necessary information
32 number
33 observations
34 problem
35 procedure
36 rank
37 ranking
38 reduction techniques
39 representation
40 results
41 space
42 structure
43 technique
44 tool
45 useful tool
46 schema:name Soft Rank Clustering
47 schema:pagination 207-213
48 schema:productId N3bc31215188c4c53966568ee0dd4cf61
49 Nfb350cf547664d739148d6e267862994
50 schema:publisher Nb05cca1bb5f44c8e89e0530eafdfec23
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051607576
52 https://doi.org/10.1007/11731177_29
53 schema:sdDatePublished 2022-01-01T19:25
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N2d0767e616d54099bb88d333ba8095f2
56 schema:url https://doi.org/10.1007/11731177_29
57 sgo:license sg:explorer/license/
58 sgo:sdDataset chapters
59 rdf:type schema:Chapter
60 N075e2a94dd5a4629a5fc57774d3468f3 schema:isbn 978-3-540-33183-4
61 978-3-540-33184-1
62 schema:name Neural Nets
63 rdf:type schema:Book
64 N0c0d7856c68e42f097e731ff22bc3350 rdf:first N6c2f869df5ee46198fdc86a6afdc9c58
65 rdf:rest Nab965f5ad0e6463b8274038412cabc08
66 N2d0767e616d54099bb88d333ba8095f2 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N3bc31215188c4c53966568ee0dd4cf61 schema:name dimensions_id
69 schema:value pub.1051607576
70 rdf:type schema:PropertyValue
71 N46ccfc7b97334d4a8aa88384af8dfcfc schema:familyName Tagliaferri
72 schema:givenName Roberto
73 rdf:type schema:Person
74 N6b13076d6fa64649b126e0f8bca16b4f rdf:first Nf160ec482ba04487960b896a9803a5ed
75 rdf:rest N0c0d7856c68e42f097e731ff22bc3350
76 N6c2f869df5ee46198fdc86a6afdc9c58 schema:familyName Nicosia
77 schema:givenName Giuseppe
78 rdf:type schema:Person
79 N7d5f5e301dd74bf18255080d91964f85 rdf:first Nf3afee0ab6cb4df9b8038f276f699fed
80 rdf:rest N6b13076d6fa64649b126e0f8bca16b4f
81 Nab965f5ad0e6463b8274038412cabc08 rdf:first N46ccfc7b97334d4a8aa88384af8dfcfc
82 rdf:rest rdf:nil
83 Nb05cca1bb5f44c8e89e0530eafdfec23 schema:name Springer Nature
84 rdf:type schema:Organisation
85 Nd9666c37c44b4747983a90b8dc0136ee rdf:first sg:person.015767137221.48
86 rdf:rest Nf3ccf685673a43ac9d824c335de4da1c
87 Ne6fec758409d4399b6feac0c777117ff rdf:first sg:person.07706215665.03
88 rdf:rest rdf:nil
89 Nf160ec482ba04487960b896a9803a5ed schema:familyName Marinaro
90 schema:givenName Maria
91 rdf:type schema:Person
92 Nf3afee0ab6cb4df9b8038f276f699fed schema:familyName Apolloni
93 schema:givenName Bruno
94 rdf:type schema:Person
95 Nf3ccf685673a43ac9d824c335de4da1c rdf:first sg:person.013052261502.67
96 rdf:rest Ne6fec758409d4399b6feac0c777117ff
97 Nfb350cf547664d739148d6e267862994 schema:name doi
98 schema:value 10.1007/11731177_29
99 rdf:type schema:PropertyValue
100 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
101 schema:name Information and Computing Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
104 schema:name Artificial Intelligence and Image Processing
105 rdf:type schema:DefinedTerm
106 sg:person.013052261502.67 schema:affiliation grid-institutes:grid.5395.a
107 schema:familyName Masulli
108 schema:givenName Francesco
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013052261502.67
110 rdf:type schema:Person
111 sg:person.015767137221.48 schema:affiliation grid-institutes:grid.157869.4
112 schema:familyName Rovetta
113 schema:givenName Stefano
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015767137221.48
115 rdf:type schema:Person
116 sg:person.07706215665.03 schema:affiliation grid-institutes:grid.157869.4
117 schema:familyName Filippone
118 schema:givenName Maurizio
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706215665.03
120 rdf:type schema:Person
121 grid-institutes:grid.157869.4 schema:alternateName Unità di Genova, Istituto Nazionale per la Fisica della Materia, Via Dodecaneso, 33, I -16146, Genova, Italy
122 schema:name Dipartimento di Informatica e Scienze dell’Informazione, Università di Genova, Via Dodecaneso, 35, I -16146, Genova, Italy
123 Unità di Genova, Istituto Nazionale per la Fisica della Materia, Via Dodecaneso, 33, I -16146, Genova, Italy
124 rdf:type schema:Organization
125 grid-institutes:grid.5395.a schema:alternateName Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo, 3, I-56127, Pisa, Italy
126 schema:name Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo, 3, I-56127, Pisa, Italy
127 Unità di Genova, Istituto Nazionale per la Fisica della Materia, Via Dodecaneso, 33, I -16146, Genova, Italy
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...