Semi-automatic Ground Truth Generation for Chart Image Recognition View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2006

AUTHORS

Li Yang , Weihua Huang , Chew Lim Tan

ABSTRACT

While research on scientific chart recognition is being carried out, there is no suitable standard that can be used to evaluate the overall performance of the chart recognition results. In this paper, a system for semi-automatic chart ground truth generation is introduced. Using the system, the user is able to extract multiple levels of ground truth data. The role of the user is to perform verification and correction and to input values where necessary. The system carries out automatic tasks such as text blocks detection and line detection etc. It can effectively reduce the time to generate ground truth data, comparing to full manual processing. We experimented the system using 115 images. The images and ground truth data generated are available to the public. More... »

PAGES

324-335

References to SciGraph publications

  • 2004. Model-Based Chart Image Recognition in GRAPHICS RECOGNITION. RECENT ADVANCES AND PERSPECTIVES
  • 1997-03. A protocol for performance evaluation of line detection algorithms in MACHINE VISION AND APPLICATIONS
  • 1998. Layout-based approach for extracting constructive elements of bar-charts in GRAPHICS RECOGNITION ALGORITHMS AND SYSTEMS
  • Book

    TITLE

    Document Analysis Systems VII

    ISBN

    978-3-540-32140-8
    978-3-540-32157-6

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/11669487_29

    DOI

    http://dx.doi.org/10.1007/11669487_29

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1017079731


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National University of Singapore", 
              "id": "https://www.grid.ac/institutes/grid.4280.e", 
              "name": [
                "School of Computing, National University of Singapore, 3 Science Drive 2, 117543, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Li", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Singapore", 
              "id": "https://www.grid.ac/institutes/grid.4280.e", 
              "name": [
                "School of Computing, National University of Singapore, 3 Science Drive 2, 117543, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Weihua", 
            "id": "sg:person.013657412261.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657412261.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Singapore", 
              "id": "https://www.grid.ac/institutes/grid.4280.e", 
              "name": [
                "School of Computing, National University of Singapore, 3 Science Drive 2, 117543, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tan", 
            "givenName": "Chew Lim", 
            "id": "sg:person.01120373366.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120373366.14"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-540-25977-0_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003381279", 
              "https://doi.org/10.1007/978-3-540-25977-0_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-25977-0_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003381279", 
              "https://doi.org/10.1007/978-3-540-25977-0_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001380050045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031489126", 
              "https://doi.org/10.1007/s001380050045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-64381-8_47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047828707", 
              "https://doi.org/10.1007/3-540-64381-8_47"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/2.144445", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061105081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.677280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061156785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.799914", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061157013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icdar.2005.187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093320371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icdar.2001.953845", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093659440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icdar.2005.164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095664742"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006", 
        "datePublishedReg": "2006-01-01", 
        "description": "While research on scientific chart recognition is being carried out, there is no suitable standard that can be used to evaluate the overall performance of the chart recognition results. In this paper, a system for semi-automatic chart ground truth generation is introduced. Using the system, the user is able to extract multiple levels of ground truth data. The role of the user is to perform verification and correction and to input values where necessary. The system carries out automatic tasks such as text blocks detection and line detection etc. It can effectively reduce the time to generate ground truth data, comparing to full manual processing. We experimented the system using 115 images. The images and ground truth data generated are available to the public.", 
        "editor": [
          {
            "familyName": "Bunke", 
            "givenName": "Horst", 
            "type": "Person"
          }, 
          {
            "familyName": "Spitz", 
            "givenName": "A. Lawrence", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/11669487_29", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-540-32140-8", 
            "978-3-540-32157-6"
          ], 
          "name": "Document Analysis Systems VII", 
          "type": "Book"
        }, 
        "name": "Semi-automatic Ground Truth Generation for Chart Image Recognition", 
        "pagination": "324-335", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1017079731"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/11669487_29"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "515ffa7be8ceaf134a95d3b43bdddab4143402290fc787cf562847a3b877cfa4"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/11669487_29", 
          "https://app.dimensions.ai/details/publication/pub.1017079731"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T07:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000357_0000000357/records_99319_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F11669487_29"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11669487_29'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11669487_29'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11669487_29'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11669487_29'


     

    This table displays all metadata directly associated to this object as RDF triples.

    113 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/11669487_29 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nee19b2a9742b4994ba59dbe3a26901e8
    4 schema:citation sg:pub.10.1007/3-540-64381-8_47
    5 sg:pub.10.1007/978-3-540-25977-0_8
    6 sg:pub.10.1007/s001380050045
    7 https://doi.org/10.1109/2.144445
    8 https://doi.org/10.1109/34.677280
    9 https://doi.org/10.1109/34.799914
    10 https://doi.org/10.1109/icdar.2001.953845
    11 https://doi.org/10.1109/icdar.2005.164
    12 https://doi.org/10.1109/icdar.2005.187
    13 schema:datePublished 2006
    14 schema:datePublishedReg 2006-01-01
    15 schema:description While research on scientific chart recognition is being carried out, there is no suitable standard that can be used to evaluate the overall performance of the chart recognition results. In this paper, a system for semi-automatic chart ground truth generation is introduced. Using the system, the user is able to extract multiple levels of ground truth data. The role of the user is to perform verification and correction and to input values where necessary. The system carries out automatic tasks such as text blocks detection and line detection etc. It can effectively reduce the time to generate ground truth data, comparing to full manual processing. We experimented the system using 115 images. The images and ground truth data generated are available to the public.
    16 schema:editor N3d9975968f864d7a90d238ec37a4bd6d
    17 schema:genre chapter
    18 schema:inLanguage en
    19 schema:isAccessibleForFree true
    20 schema:isPartOf Na380e1411d514250bafe4791010e2b0c
    21 schema:name Semi-automatic Ground Truth Generation for Chart Image Recognition
    22 schema:pagination 324-335
    23 schema:productId N1c15999224ef45abbfd2dbed702db678
    24 N3649660d49e94a5fa43befd9a98a6c1b
    25 N56d08c7b49544f16be935927698f4405
    26 schema:publisher N05d76b489f434aa89cc296bb4324ffd1
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017079731
    28 https://doi.org/10.1007/11669487_29
    29 schema:sdDatePublished 2019-04-16T07:37
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher Nbb1271be8f834f38a5437724500b91d7
    32 schema:url https://link.springer.com/10.1007%2F11669487_29
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset chapters
    35 rdf:type schema:Chapter
    36 N05d76b489f434aa89cc296bb4324ffd1 schema:location Berlin, Heidelberg
    37 schema:name Springer Berlin Heidelberg
    38 rdf:type schema:Organisation
    39 N0a30b81c21744c53b481e82afdec9224 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
    40 schema:familyName Yang
    41 schema:givenName Li
    42 rdf:type schema:Person
    43 N1c15999224ef45abbfd2dbed702db678 schema:name readcube_id
    44 schema:value 515ffa7be8ceaf134a95d3b43bdddab4143402290fc787cf562847a3b877cfa4
    45 rdf:type schema:PropertyValue
    46 N27fb6915a6bb4707ba1c24e11ffbe19a rdf:first N6f129283edd14d0998ce074946ee720c
    47 rdf:rest rdf:nil
    48 N2fa8600ef4ab4a90a3a3c6539f3d695d rdf:first sg:person.01120373366.14
    49 rdf:rest rdf:nil
    50 N3649660d49e94a5fa43befd9a98a6c1b schema:name dimensions_id
    51 schema:value pub.1017079731
    52 rdf:type schema:PropertyValue
    53 N3ccad3a072c14e10a55d88a9b87f37a7 schema:familyName Bunke
    54 schema:givenName Horst
    55 rdf:type schema:Person
    56 N3d9975968f864d7a90d238ec37a4bd6d rdf:first N3ccad3a072c14e10a55d88a9b87f37a7
    57 rdf:rest N27fb6915a6bb4707ba1c24e11ffbe19a
    58 N56d08c7b49544f16be935927698f4405 schema:name doi
    59 schema:value 10.1007/11669487_29
    60 rdf:type schema:PropertyValue
    61 N6f129283edd14d0998ce074946ee720c schema:familyName Spitz
    62 schema:givenName A. Lawrence
    63 rdf:type schema:Person
    64 Na380e1411d514250bafe4791010e2b0c schema:isbn 978-3-540-32140-8
    65 978-3-540-32157-6
    66 schema:name Document Analysis Systems VII
    67 rdf:type schema:Book
    68 Nb00404c6308c49db99ba9f416a167ea4 rdf:first sg:person.013657412261.81
    69 rdf:rest N2fa8600ef4ab4a90a3a3c6539f3d695d
    70 Nbb1271be8f834f38a5437724500b91d7 schema:name Springer Nature - SN SciGraph project
    71 rdf:type schema:Organization
    72 Nee19b2a9742b4994ba59dbe3a26901e8 rdf:first N0a30b81c21744c53b481e82afdec9224
    73 rdf:rest Nb00404c6308c49db99ba9f416a167ea4
    74 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Information and Computing Sciences
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Artificial Intelligence and Image Processing
    79 rdf:type schema:DefinedTerm
    80 sg:person.01120373366.14 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
    81 schema:familyName Tan
    82 schema:givenName Chew Lim
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120373366.14
    84 rdf:type schema:Person
    85 sg:person.013657412261.81 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
    86 schema:familyName Huang
    87 schema:givenName Weihua
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657412261.81
    89 rdf:type schema:Person
    90 sg:pub.10.1007/3-540-64381-8_47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047828707
    91 https://doi.org/10.1007/3-540-64381-8_47
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/978-3-540-25977-0_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003381279
    94 https://doi.org/10.1007/978-3-540-25977-0_8
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/s001380050045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031489126
    97 https://doi.org/10.1007/s001380050045
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1109/2.144445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061105081
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1109/34.677280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156785
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1109/34.799914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157013
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1109/icdar.2001.953845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093659440
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1109/icdar.2005.164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095664742
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1109/icdar.2005.187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093320371
    110 rdf:type schema:CreativeWork
    111 https://www.grid.ac/institutes/grid.4280.e schema:alternateName National University of Singapore
    112 schema:name School of Computing, National University of Singapore, 3 Science Drive 2, 117543, Singapore
    113 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...