Detecting Implicit Dependencies Between Tasks from Event Logs View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2006

AUTHORS

Lijie Wen , Jianmin Wang , Jiaguang Sun

ABSTRACT

Process mining aims at extracting information from event logs to capture the business process as it is being executed. In spite of many researchers’ persistent efforts, there are still some challenging problems to be solved. In this paper, we focus on mining non-free-choice constructs, where the process models are represented in Petri nets. In fact, there are totally two kinds of causal dependencies between tasks, i.e., explicit and implicit ones. Implicit dependency is very hard to mine by current mining approaches. Thus we propose three theorems to detect implicit dependency between tasks and give their proofs. The experimental results show that our approach is powerful enough to mine process models with non-free-choice constructs. More... »

PAGES

591-603

Book

TITLE

Frontiers of WWW Research and Development - APWeb 2006

ISBN

978-3-540-31142-3
978-3-540-32437-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11610113_52

DOI

http://dx.doi.org/10.1007/11610113_52

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037632077


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wen", 
        "givenName": "Lijie", 
        "id": "sg:person.013640554311.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640554311.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jianmin", 
        "id": "sg:person.012303351315.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Jiaguang", 
        "id": "sg:person.011411464635.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011411464635.59"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "Process mining aims at extracting information from event logs to capture the business process as it is being executed. In spite of many researchers\u2019 persistent efforts, there are still some challenging problems to be solved. In this paper, we focus on mining non-free-choice constructs, where the process models are represented in Petri nets. In fact, there are totally two kinds of causal dependencies between tasks, i.e., explicit and implicit ones. Implicit dependency is very hard to mine by current mining approaches. Thus we propose three theorems to detect implicit dependency between tasks and give their proofs. The experimental results show that our approach is powerful enough to mine process models with non-free-choice constructs.", 
    "editor": [
      {
        "familyName": "Zhou", 
        "givenName": "Xiaofang", 
        "type": "Person"
      }, 
      {
        "familyName": "Li", 
        "givenName": "Jianzhong", 
        "type": "Person"
      }, 
      {
        "familyName": "Shen", 
        "givenName": "Heng Tao", 
        "type": "Person"
      }, 
      {
        "familyName": "Kitsuregawa", 
        "givenName": "Masaru", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhang", 
        "givenName": "Yanchun", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11610113_52", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-31142-3", 
        "978-3-540-32437-9"
      ], 
      "name": "Frontiers of WWW Research and Development - APWeb 2006", 
      "type": "Book"
    }, 
    "keywords": [
      "implicit dependencies", 
      "event logs", 
      "choice construct", 
      "process model", 
      "process mining", 
      "business processes", 
      "mining approach", 
      "challenging problem", 
      "Petri nets", 
      "causal dependencies", 
      "implicit ones", 
      "experimental results", 
      "task", 
      "mining", 
      "dependency", 
      "log", 
      "nets", 
      "information", 
      "proof", 
      "model", 
      "researchers", 
      "kind", 
      "efforts", 
      "one", 
      "process", 
      "constructs", 
      "results", 
      "fact", 
      "theorem", 
      "spite", 
      "persistent efforts", 
      "approach", 
      "paper", 
      "problem", 
      "current mining approaches"
    ], 
    "name": "Detecting Implicit Dependencies Between Tasks from Event Logs", 
    "pagination": "591-603", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037632077"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11610113_52"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11610113_52", 
      "https://app.dimensions.ai/details/publication/pub.1037632077"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_222.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/11610113_52"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11610113_52'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11610113_52'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11610113_52'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11610113_52'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      23 PREDICATES      61 URIs      54 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11610113_52 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd9f4df1c54db493b8da714d97f7620a9
4 schema:datePublished 2006
5 schema:datePublishedReg 2006-01-01
6 schema:description Process mining aims at extracting information from event logs to capture the business process as it is being executed. In spite of many researchers’ persistent efforts, there are still some challenging problems to be solved. In this paper, we focus on mining non-free-choice constructs, where the process models are represented in Petri nets. In fact, there are totally two kinds of causal dependencies between tasks, i.e., explicit and implicit ones. Implicit dependency is very hard to mine by current mining approaches. Thus we propose three theorems to detect implicit dependency between tasks and give their proofs. The experimental results show that our approach is powerful enough to mine process models with non-free-choice constructs.
7 schema:editor N1e5244b10cda4d6080999145d56aa13a
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N6864ca54d40e47e7a38107189a87ecf4
12 schema:keywords Petri nets
13 approach
14 business processes
15 causal dependencies
16 challenging problem
17 choice construct
18 constructs
19 current mining approaches
20 dependency
21 efforts
22 event logs
23 experimental results
24 fact
25 implicit dependencies
26 implicit ones
27 information
28 kind
29 log
30 mining
31 mining approach
32 model
33 nets
34 one
35 paper
36 persistent efforts
37 problem
38 process
39 process mining
40 process model
41 proof
42 researchers
43 results
44 spite
45 task
46 theorem
47 schema:name Detecting Implicit Dependencies Between Tasks from Event Logs
48 schema:pagination 591-603
49 schema:productId Nc480726ef0d24370b9fe643a53bd9514
50 Nc5358b227fd44d76a6b42f08c74ffd01
51 schema:publisher N69e868f25b544c7282c1ca98127d7dbe
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037632077
53 https://doi.org/10.1007/11610113_52
54 schema:sdDatePublished 2021-12-01T20:00
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nc6da8657fa2e4732b5f1d845e99cd372
57 schema:url https://doi.org/10.1007/11610113_52
58 sgo:license sg:explorer/license/
59 sgo:sdDataset chapters
60 rdf:type schema:Chapter
61 N1e5244b10cda4d6080999145d56aa13a rdf:first N8dec22de29894809a2290bd50cec7cbd
62 rdf:rest N8ce7884597ca45dbb3e192e14ebc4c67
63 N2bce201db0974c649cfdb7c0bc379846 schema:familyName Zhang
64 schema:givenName Yanchun
65 rdf:type schema:Person
66 N3aa4619df6054e019569db6e6c09a846 rdf:first N8f3ca4d07fac4d3eb9eebff0224821ab
67 rdf:rest Nf80b555ebdc24b6d84f18c238375fca3
68 N4ac36d56c7e3470e894ed6e7e5aad17b rdf:first sg:person.012303351315.43
69 rdf:rest Ndd4583a109d94b37b4b278eb10d146f0
70 N4bf57c7b13a740de8b6e10b78b0e8e7a rdf:first Nf6f6c71420854760b4f6e7986fbd2634
71 rdf:rest N3aa4619df6054e019569db6e6c09a846
72 N6864ca54d40e47e7a38107189a87ecf4 schema:isbn 978-3-540-31142-3
73 978-3-540-32437-9
74 schema:name Frontiers of WWW Research and Development - APWeb 2006
75 rdf:type schema:Book
76 N69e868f25b544c7282c1ca98127d7dbe schema:name Springer Nature
77 rdf:type schema:Organisation
78 N8ce7884597ca45dbb3e192e14ebc4c67 rdf:first N91f7d7dc1fd14a2d83404c9f0a86d18c
79 rdf:rest N4bf57c7b13a740de8b6e10b78b0e8e7a
80 N8dec22de29894809a2290bd50cec7cbd schema:familyName Zhou
81 schema:givenName Xiaofang
82 rdf:type schema:Person
83 N8f3ca4d07fac4d3eb9eebff0224821ab schema:familyName Kitsuregawa
84 schema:givenName Masaru
85 rdf:type schema:Person
86 N91f7d7dc1fd14a2d83404c9f0a86d18c schema:familyName Li
87 schema:givenName Jianzhong
88 rdf:type schema:Person
89 Nc480726ef0d24370b9fe643a53bd9514 schema:name doi
90 schema:value 10.1007/11610113_52
91 rdf:type schema:PropertyValue
92 Nc5358b227fd44d76a6b42f08c74ffd01 schema:name dimensions_id
93 schema:value pub.1037632077
94 rdf:type schema:PropertyValue
95 Nc6da8657fa2e4732b5f1d845e99cd372 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Nd9f4df1c54db493b8da714d97f7620a9 rdf:first sg:person.013640554311.55
98 rdf:rest N4ac36d56c7e3470e894ed6e7e5aad17b
99 Ndd4583a109d94b37b4b278eb10d146f0 rdf:first sg:person.011411464635.59
100 rdf:rest rdf:nil
101 Nf6f6c71420854760b4f6e7986fbd2634 schema:familyName Shen
102 schema:givenName Heng Tao
103 rdf:type schema:Person
104 Nf80b555ebdc24b6d84f18c238375fca3 rdf:first N2bce201db0974c649cfdb7c0bc379846
105 rdf:rest rdf:nil
106 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
107 schema:name Information and Computing Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
110 schema:name Artificial Intelligence and Image Processing
111 rdf:type schema:DefinedTerm
112 sg:person.011411464635.59 schema:affiliation grid-institutes:grid.12527.33
113 schema:familyName Sun
114 schema:givenName Jiaguang
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011411464635.59
116 rdf:type schema:Person
117 sg:person.012303351315.43 schema:affiliation grid-institutes:grid.12527.33
118 schema:familyName Wang
119 schema:givenName Jianmin
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43
121 rdf:type schema:Person
122 sg:person.013640554311.55 schema:affiliation grid-institutes:grid.12527.33
123 schema:familyName Wen
124 schema:givenName Lijie
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640554311.55
126 rdf:type schema:Person
127 grid-institutes:grid.12527.33 schema:alternateName School of Software, Tsinghua University, 100084, Beijing, China
128 schema:name School of Software, Tsinghua University, 100084, Beijing, China
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...