Facial Features Location by Analytic Boosted Cascade Detector View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005

AUTHORS

Lei Wang , Beiji Zou , Jiaguang Sun

ABSTRACT

We describe a novel technique called Analytic Boosted Cascade Detector (ABCD) to automatically locate features on the human face. ABCD extends the original Boosted Cascade Detector (BCD) in three ways: (i) a probabilistic model is included to connect the classifier responses with the facial features; (ii) a features location method based on the probabilistic model is formulated; (iii) a selection criterion for face candidates is presented. The new technique melts face detection and facial features location into a unified process. It outperforms Average Positions (AVG) and Boosted Classifiers + best response (BestHit). It also shows great speed superior to the methods based on nonlinear optimization, e.g. AAM and SOS. More... »

PAGES

959-964

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11596981_142

DOI

http://dx.doi.org/10.1007/11596981_142

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050452627


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Computer and Communication, Hunan University, 410082, China", 
          "id": "http://www.grid.ac/institutes/grid.67293.39", 
          "name": [
            "School of Computer and Communication, Hunan University, 410082, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Lei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Information Science and Engineering, Central South University, 410083, China", 
          "id": "http://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "School of Information Science and Engineering, Central South University, 410083, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zou", 
        "givenName": "Beiji", 
        "id": "sg:person.012216115453.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012216115453.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Jiaguang", 
        "id": "sg:person.011411464635.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011411464635.59"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "We describe a novel technique called Analytic Boosted Cascade Detector (ABCD) to automatically locate features on the human face. ABCD extends the original Boosted Cascade Detector (BCD) in three ways: (i) a probabilistic model is included to connect the classifier responses with the facial features; (ii) a features location method based on the probabilistic model is formulated; (iii) a selection criterion for face candidates is presented. The new technique melts face detection and facial features location into a unified process. It outperforms Average Positions (AVG) and Boosted Classifiers + best response (BestHit). It also shows great speed superior to the methods based on nonlinear optimization, e.g. AAM and SOS.", 
    "editor": [
      {
        "familyName": "Hao", 
        "givenName": "Yue", 
        "type": "Person"
      }, 
      {
        "familyName": "Liu", 
        "givenName": "Jiming", 
        "type": "Person"
      }, 
      {
        "familyName": "Wang", 
        "givenName": "Yu-Ping", 
        "type": "Person"
      }, 
      {
        "familyName": "Cheung", 
        "givenName": "Yiu-ming", 
        "type": "Person"
      }, 
      {
        "familyName": "Yin", 
        "givenName": "Hujun", 
        "type": "Person"
      }, 
      {
        "familyName": "Jiao", 
        "givenName": "Licheng", 
        "type": "Person"
      }, 
      {
        "familyName": "Ma", 
        "givenName": "Jianfeng", 
        "type": "Person"
      }, 
      {
        "familyName": "Jiao", 
        "givenName": "Yong-Chang", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11596981_142", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-30819-5", 
        "978-3-540-31598-8"
      ], 
      "name": "Computational Intelligence and Security", 
      "type": "Book"
    }, 
    "keywords": [
      "selection criteria", 
      "good response", 
      "response", 
      "facial features", 
      "facial", 
      "novel technique", 
      "cascade detector", 
      "features", 
      "human face", 
      "probabilistic model", 
      "classifier responses", 
      "feature location methods", 
      "location method", 
      "method", 
      "criteria", 
      "face candidates", 
      "candidates", 
      "detection", 
      "facial feature location", 
      "feature location", 
      "location", 
      "Unified Process", 
      "Boosted Classifiers", 
      "SOS", 
      "technique", 
      "detector", 
      "face", 
      "model", 
      "process", 
      "average position", 
      "position", 
      "classifier", 
      "greater speed", 
      "nonlinear optimization", 
      "optimization", 
      "AAM", 
      "way", 
      "speed", 
      "Analytic Boosted Cascade Detector", 
      "Boosted Cascade Detector", 
      "original Boosted Cascade Detector", 
      "new technique melts", 
      "technique melts", 
      "melt"
    ], 
    "name": "Facial Features Location by Analytic Boosted Cascade Detector", 
    "pagination": "959-964", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050452627"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11596981_142"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11596981_142", 
      "https://app.dimensions.ai/details/publication/pub.1050452627"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_417.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/11596981_142"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11596981_142'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11596981_142'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11596981_142'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11596981_142'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      23 PREDICATES      70 URIs      63 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11596981_142 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf8d4c5737bcf4880a1cb4b27ba1aa2ec
4 schema:datePublished 2005
5 schema:datePublishedReg 2005-01-01
6 schema:description We describe a novel technique called Analytic Boosted Cascade Detector (ABCD) to automatically locate features on the human face. ABCD extends the original Boosted Cascade Detector (BCD) in three ways: (i) a probabilistic model is included to connect the classifier responses with the facial features; (ii) a features location method based on the probabilistic model is formulated; (iii) a selection criterion for face candidates is presented. The new technique melts face detection and facial features location into a unified process. It outperforms Average Positions (AVG) and Boosted Classifiers + best response (BestHit). It also shows great speed superior to the methods based on nonlinear optimization, e.g. AAM and SOS.
7 schema:editor N5a927c46d4094ea08ec3b704c54044b4
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N73fd385517fe4985b85ff7f496eece47
12 schema:keywords AAM
13 Analytic Boosted Cascade Detector
14 Boosted Cascade Detector
15 Boosted Classifiers
16 SOS
17 Unified Process
18 average position
19 candidates
20 cascade detector
21 classifier
22 classifier responses
23 criteria
24 detection
25 detector
26 face
27 face candidates
28 facial
29 facial feature location
30 facial features
31 feature location
32 feature location methods
33 features
34 good response
35 greater speed
36 human face
37 location
38 location method
39 melt
40 method
41 model
42 new technique melts
43 nonlinear optimization
44 novel technique
45 optimization
46 original Boosted Cascade Detector
47 position
48 probabilistic model
49 process
50 response
51 selection criteria
52 speed
53 technique
54 technique melts
55 way
56 schema:name Facial Features Location by Analytic Boosted Cascade Detector
57 schema:pagination 959-964
58 schema:productId N1a8f824794584ec9b8c901d13b90be52
59 Ne7df5e0c8bf743d4abdb4b1f2f57b25c
60 schema:publisher N795f3fbc225a4e9aa4e2e91e60ff401b
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050452627
62 https://doi.org/10.1007/11596981_142
63 schema:sdDatePublished 2022-01-01T19:24
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N6901824561434010934a1a4bf4f0e563
66 schema:url https://doi.org/10.1007/11596981_142
67 sgo:license sg:explorer/license/
68 sgo:sdDataset chapters
69 rdf:type schema:Chapter
70 N14e28a701b3844d79a0d11da3e9ca490 schema:familyName Jiao
71 schema:givenName Licheng
72 rdf:type schema:Person
73 N18f07c9202aa4e3e8f2b70620be500c2 rdf:first sg:person.011411464635.59
74 rdf:rest rdf:nil
75 N1a8f824794584ec9b8c901d13b90be52 schema:name dimensions_id
76 schema:value pub.1050452627
77 rdf:type schema:PropertyValue
78 N2683e4e2c4cb4fdb8d4d9625e2fdd2a8 rdf:first Nc59f665cc38d47feac987d17af809d25
79 rdf:rest Na4819bc04b9241339f5609636edb6eb1
80 N329559de67924384afaa7b6ef5c1a3b4 schema:familyName Jiao
81 schema:givenName Yong-Chang
82 rdf:type schema:Person
83 N4ad5ecf4434d43208f46cba995f83348 rdf:first sg:person.012216115453.86
84 rdf:rest N18f07c9202aa4e3e8f2b70620be500c2
85 N554e3459bb1f47539122bb553c8361fc rdf:first N9fd71dcea6fe48e2a1650c1409946f92
86 rdf:rest Nd066c10f84e948888cee5cc3dba4c812
87 N5a927c46d4094ea08ec3b704c54044b4 rdf:first N9081fb1002d547e1a55fe49fb96350f2
88 rdf:rest N71995ff01cdd4ff1a545f20bf9773148
89 N5b0dc9df74c44274beb776574717f1f2 schema:familyName Cheung
90 schema:givenName Yiu-ming
91 rdf:type schema:Person
92 N5d64b169c0f6418aaf55355d76309db0 schema:affiliation grid-institutes:grid.67293.39
93 schema:familyName Wang
94 schema:givenName Lei
95 rdf:type schema:Person
96 N6901824561434010934a1a4bf4f0e563 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N71995ff01cdd4ff1a545f20bf9773148 rdf:first Nb9c5082685f84b1f8b4b3597f68bcb2b
99 rdf:rest Nbb468623d21246ecb491dc86a4e0c0f7
100 N73fd385517fe4985b85ff7f496eece47 schema:isbn 978-3-540-30819-5
101 978-3-540-31598-8
102 schema:name Computational Intelligence and Security
103 rdf:type schema:Book
104 N795f3fbc225a4e9aa4e2e91e60ff401b schema:name Springer Nature
105 rdf:type schema:Organisation
106 N9081fb1002d547e1a55fe49fb96350f2 schema:familyName Hao
107 schema:givenName Yue
108 rdf:type schema:Person
109 N9edc06da40a24edc9f7fab204f1cc899 rdf:first N5b0dc9df74c44274beb776574717f1f2
110 rdf:rest N2683e4e2c4cb4fdb8d4d9625e2fdd2a8
111 N9fd71dcea6fe48e2a1650c1409946f92 schema:familyName Ma
112 schema:givenName Jianfeng
113 rdf:type schema:Person
114 Na4819bc04b9241339f5609636edb6eb1 rdf:first N14e28a701b3844d79a0d11da3e9ca490
115 rdf:rest N554e3459bb1f47539122bb553c8361fc
116 Na95150ac6ce4490f90fabd64301a8ba0 schema:familyName Wang
117 schema:givenName Yu-Ping
118 rdf:type schema:Person
119 Nb9c5082685f84b1f8b4b3597f68bcb2b schema:familyName Liu
120 schema:givenName Jiming
121 rdf:type schema:Person
122 Nbb468623d21246ecb491dc86a4e0c0f7 rdf:first Na95150ac6ce4490f90fabd64301a8ba0
123 rdf:rest N9edc06da40a24edc9f7fab204f1cc899
124 Nc59f665cc38d47feac987d17af809d25 schema:familyName Yin
125 schema:givenName Hujun
126 rdf:type schema:Person
127 Nd066c10f84e948888cee5cc3dba4c812 rdf:first N329559de67924384afaa7b6ef5c1a3b4
128 rdf:rest rdf:nil
129 Ne7df5e0c8bf743d4abdb4b1f2f57b25c schema:name doi
130 schema:value 10.1007/11596981_142
131 rdf:type schema:PropertyValue
132 Nf8d4c5737bcf4880a1cb4b27ba1aa2ec rdf:first N5d64b169c0f6418aaf55355d76309db0
133 rdf:rest N4ad5ecf4434d43208f46cba995f83348
134 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
135 schema:name Information and Computing Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
138 schema:name Artificial Intelligence and Image Processing
139 rdf:type schema:DefinedTerm
140 sg:person.011411464635.59 schema:affiliation grid-institutes:grid.12527.33
141 schema:familyName Sun
142 schema:givenName Jiaguang
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011411464635.59
144 rdf:type schema:Person
145 sg:person.012216115453.86 schema:affiliation grid-institutes:grid.216417.7
146 schema:familyName Zou
147 schema:givenName Beiji
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012216115453.86
149 rdf:type schema:Person
150 grid-institutes:grid.12527.33 schema:alternateName School of Software, Tsinghua University, 100084, China
151 schema:name School of Software, Tsinghua University, 100084, China
152 rdf:type schema:Organization
153 grid-institutes:grid.216417.7 schema:alternateName School of Information Science and Engineering, Central South University, 410083, China
154 schema:name School of Information Science and Engineering, Central South University, 410083, China
155 rdf:type schema:Organization
156 grid-institutes:grid.67293.39 schema:alternateName School of Computer and Communication, Hunan University, 410082, China
157 schema:name School of Computer and Communication, Hunan University, 410082, China
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...