Directional Feature Detection and Correspondence View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005

AUTHORS

Wen-Hao Wang , Fu-Jen Hsiao , Tsuhan Chen

ABSTRACT

A method is proposed to detect useful directional feature points other than corner points considering that the number of corner points may not be sufficient in a scene. This is achieved by directional analysis of properties of image points by virtue of the proposed gradient operators with different direction topologies. A matching criterion is also proposed to find the initial correspondence by using the feature vectors that are acquired from the results of directional analysis. For the purpose of improving the final correspondence, four constraints are employed in the system to seek and refine the correspondence. More... »

PAGES

665-675

Book

TITLE

Advances in Multimedia Information Processing - PCM 2005

ISBN

978-3-540-30040-3
978-3-540-32131-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11582267_58

DOI

http://dx.doi.org/10.1007/11582267_58

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043546574


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Industrial Technology Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.418030.e", 
          "name": [
            "Industrial Technology Research Institute, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Wen-Hao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Industrial Technology Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.418030.e", 
          "name": [
            "Industrial Technology Research Institute, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hsiao", 
        "givenName": "Fu-Jen", 
        "id": "sg:person.013003225445.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013003225445.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carnegie Mellon University", 
          "id": "https://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Carnegie Mellon University, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Tsuhan", 
        "id": "sg:person.012245072625.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012245072625.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.imavis.2004.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008199136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/358669.358692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033921345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008199403446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048406451", 
          "https://doi.org/10.1023/a:1008199403446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.601246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.481440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2003.818041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061640935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2004.44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.1994.323794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093488775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5244/c.2.23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099320318"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "A method is proposed to detect useful directional feature points other than corner points considering that the number of corner points may not be sufficient in a scene. This is achieved by directional analysis of properties of image points by virtue of the proposed gradient operators with different direction topologies. A matching criterion is also proposed to find the initial correspondence by using the feature vectors that are acquired from the results of directional analysis. For the purpose of improving the final correspondence, four constraints are employed in the system to seek and refine the correspondence.", 
    "editor": [
      {
        "familyName": "Ho", 
        "givenName": "Yo-Sung", 
        "type": "Person"
      }, 
      {
        "familyName": "Kim", 
        "givenName": "Hyoung-Joong", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11582267_58", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-30040-3", 
        "978-3-540-32131-6"
      ], 
      "name": "Advances in Multimedia Information Processing - PCM 2005", 
      "type": "Book"
    }, 
    "name": "Directional Feature Detection and Correspondence", 
    "pagination": "665-675", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043546574"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11582267_58"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cf6da4cb6bfe932149fb5e5153cf65948dd9d9191937729c9805416f536939b1"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11582267_58", 
      "https://app.dimensions.ai/details/publication/pub.1043546574"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118327_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F11582267_58"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11582267_58'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11582267_58'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11582267_58'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11582267_58'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11582267_58 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N15eb7547a5934738afc3e8e3007c1214
4 schema:citation sg:pub.10.1023/a:1008199403446
5 https://doi.org/10.1016/j.imavis.2004.02.001
6 https://doi.org/10.1109/34.601246
7 https://doi.org/10.1109/42.481440
8 https://doi.org/10.1109/cvpr.1994.323794
9 https://doi.org/10.1109/tip.2003.818041
10 https://doi.org/10.1109/tpami.2004.44
11 https://doi.org/10.1145/358669.358692
12 https://doi.org/10.5244/c.2.23
13 schema:datePublished 2005
14 schema:datePublishedReg 2005-01-01
15 schema:description A method is proposed to detect useful directional feature points other than corner points considering that the number of corner points may not be sufficient in a scene. This is achieved by directional analysis of properties of image points by virtue of the proposed gradient operators with different direction topologies. A matching criterion is also proposed to find the initial correspondence by using the feature vectors that are acquired from the results of directional analysis. For the purpose of improving the final correspondence, four constraints are employed in the system to seek and refine the correspondence.
16 schema:editor Ndb81a579d68e44b2a031d8e0b96d815d
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N64d84e62c6c54c19b92ffefd6f440ac9
21 schema:name Directional Feature Detection and Correspondence
22 schema:pagination 665-675
23 schema:productId N58da44e0fdf84456bad3825a236673ef
24 N91582d617fe049e38cdd3f60207ab2f1
25 N98d602661fc84842b68f57eecfd7fbe2
26 schema:publisher N2ca9bbd24a014c6cab33331ce0041bf4
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043546574
28 https://doi.org/10.1007/11582267_58
29 schema:sdDatePublished 2019-04-16T08:09
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Nadf7cb0151f948a88e03789328aa018c
32 schema:url https://link.springer.com/10.1007%2F11582267_58
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N15eb7547a5934738afc3e8e3007c1214 rdf:first N71f45a6a84ed4be795eafd562f2c92f8
37 rdf:rest Nf7e66ae175d94b19ae702673504cbfcb
38 N2b127d422fc04972935abcfdf6427d7a rdf:first sg:person.012245072625.31
39 rdf:rest rdf:nil
40 N2ca9bbd24a014c6cab33331ce0041bf4 schema:location Berlin, Heidelberg
41 schema:name Springer Berlin Heidelberg
42 rdf:type schema:Organisation
43 N58da44e0fdf84456bad3825a236673ef schema:name dimensions_id
44 schema:value pub.1043546574
45 rdf:type schema:PropertyValue
46 N64d84e62c6c54c19b92ffefd6f440ac9 schema:isbn 978-3-540-30040-3
47 978-3-540-32131-6
48 schema:name Advances in Multimedia Information Processing - PCM 2005
49 rdf:type schema:Book
50 N71f45a6a84ed4be795eafd562f2c92f8 schema:affiliation https://www.grid.ac/institutes/grid.418030.e
51 schema:familyName Wang
52 schema:givenName Wen-Hao
53 rdf:type schema:Person
54 N892a05399de246a197f8997ac0f06a27 schema:familyName Kim
55 schema:givenName Hyoung-Joong
56 rdf:type schema:Person
57 N91582d617fe049e38cdd3f60207ab2f1 schema:name readcube_id
58 schema:value cf6da4cb6bfe932149fb5e5153cf65948dd9d9191937729c9805416f536939b1
59 rdf:type schema:PropertyValue
60 N98d602661fc84842b68f57eecfd7fbe2 schema:name doi
61 schema:value 10.1007/11582267_58
62 rdf:type schema:PropertyValue
63 N9ce84e6bad964eea9512776932404e24 rdf:first N892a05399de246a197f8997ac0f06a27
64 rdf:rest rdf:nil
65 Nadf7cb0151f948a88e03789328aa018c schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 Nb902227ab4a94d7782e4a38422f1bd2f schema:familyName Ho
68 schema:givenName Yo-Sung
69 rdf:type schema:Person
70 Ndb81a579d68e44b2a031d8e0b96d815d rdf:first Nb902227ab4a94d7782e4a38422f1bd2f
71 rdf:rest N9ce84e6bad964eea9512776932404e24
72 Nf7e66ae175d94b19ae702673504cbfcb rdf:first sg:person.013003225445.48
73 rdf:rest N2b127d422fc04972935abcfdf6427d7a
74 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
75 schema:name Information and Computing Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
78 schema:name Artificial Intelligence and Image Processing
79 rdf:type schema:DefinedTerm
80 sg:person.012245072625.31 schema:affiliation https://www.grid.ac/institutes/grid.147455.6
81 schema:familyName Chen
82 schema:givenName Tsuhan
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012245072625.31
84 rdf:type schema:Person
85 sg:person.013003225445.48 schema:affiliation https://www.grid.ac/institutes/grid.418030.e
86 schema:familyName Hsiao
87 schema:givenName Fu-Jen
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013003225445.48
89 rdf:type schema:Person
90 sg:pub.10.1023/a:1008199403446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048406451
91 https://doi.org/10.1023/a:1008199403446
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.imavis.2004.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008199136
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/34.601246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156629
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/42.481440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170394
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/cvpr.1994.323794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093488775
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/tip.2003.818041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061640935
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/tpami.2004.44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742726
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1145/358669.358692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033921345
106 rdf:type schema:CreativeWork
107 https://doi.org/10.5244/c.2.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099320318
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.147455.6 schema:alternateName Carnegie Mellon University
110 schema:name Carnegie Mellon University, US
111 rdf:type schema:Organization
112 https://www.grid.ac/institutes/grid.418030.e schema:alternateName Industrial Technology Research Institute
113 schema:name Industrial Technology Research Institute, Taiwan
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...