Tool Insert Wear Classification Using Statistical Descriptors and Neuronal Networks View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2005

AUTHORS

E. Alegre , R. Aláiz , J. Barreiro , M. Viñuela

ABSTRACT

The goal of this work is to automatically determine the level of tool insert wear based on images acquired using a vision system. Experimental wear was carried out by machining AISI SAE 1045 and 4140 steel bars in a precision CNC lathe and using Sandvik inserts of tungsten carbide. A Pulnix PE2015 B/W with an optic composed by an industrial zoom 70 XL to 1.5X and a diffuse lighting system was used for acquisition. After images were pre-processed and wear area segmented, several patterns of the wear area were obtained using a set of descriptors based on statistical moments. Two sets of experiments were carried out, the first one considering two classes, low wear level and high wear level, respectively; the second one considering three classes. Performance of three classifiers was evaluated: Lp2, k-nearest neighbours and neural networks. Zernike and Legendre descriptors show the lowest error rates using a MLP neuronal network for classifying. More... »

PAGES

786-793

Book

TITLE

Progress in Pattern Recognition, Image Analysis and Applications

ISBN

978-3-540-29850-2
978-3-540-32242-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11578079_82

DOI

http://dx.doi.org/10.1007/11578079_82

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015405939


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Escuela de Ingenier\u00edas Industrial e Inform\u00e1tica, Universidad de Le\u00f3n, 24071, Le\u00f3n, Espa\u00f1a", 
          "id": "http://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "Escuela de Ingenier\u00edas Industrial e Inform\u00e1tica, Universidad de Le\u00f3n, 24071, Le\u00f3n, Espa\u00f1a"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alegre", 
        "givenName": "E.", 
        "id": "sg:person.016266057305.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016266057305.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Escuela de Ingenier\u00edas Industrial e Inform\u00e1tica, Universidad de Le\u00f3n, 24071, Le\u00f3n, Espa\u00f1a", 
          "id": "http://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "Escuela de Ingenier\u00edas Industrial e Inform\u00e1tica, Universidad de Le\u00f3n, 24071, Le\u00f3n, Espa\u00f1a"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Al\u00e1iz", 
        "givenName": "R.", 
        "id": "sg:person.015406761710.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015406761710.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Escuela de Ingenier\u00edas Industrial e Inform\u00e1tica, Universidad de Le\u00f3n, 24071, Le\u00f3n, Espa\u00f1a", 
          "id": "http://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "Escuela de Ingenier\u00edas Industrial e Inform\u00e1tica, Universidad de Le\u00f3n, 24071, Le\u00f3n, Espa\u00f1a"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barreiro", 
        "givenName": "J.", 
        "id": "sg:person.016704603071.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016704603071.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Escuela de Ingenier\u00edas Industrial e Inform\u00e1tica, Universidad de Le\u00f3n, 24071, Le\u00f3n, Espa\u00f1a", 
          "id": "http://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "Escuela de Ingenier\u00edas Industrial e Inform\u00e1tica, Universidad de Le\u00f3n, 24071, Le\u00f3n, Espa\u00f1a"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vi\u00f1uela", 
        "givenName": "M.", 
        "type": "Person"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "The goal of this work is to automatically determine the level of tool insert wear based on images acquired using a vision system. Experimental wear was carried out by machining AISI SAE 1045 and 4140 steel bars in a precision CNC lathe and using Sandvik inserts of tungsten carbide. A Pulnix PE2015 B/W with an optic composed by an industrial zoom 70 XL to 1.5X and a diffuse lighting system was used for acquisition. After images were pre-processed and wear area segmented, several patterns of the wear area were obtained using a set of descriptors based on statistical moments. Two sets of experiments were carried out, the first one considering two classes, low wear level and high wear level, respectively; the second one considering three classes. Performance of three classifiers was evaluated: Lp2, k-nearest neighbours and neural networks. Zernike and Legendre descriptors show the lowest error rates using a MLP neuronal network for classifying.", 
    "editor": [
      {
        "familyName": "Sanfeliu", 
        "givenName": "Alberto", 
        "type": "Person"
      }, 
      {
        "familyName": "Cort\u00e9s", 
        "givenName": "Manuel Lazo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11578079_82", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-29850-2", 
        "978-3-540-32242-9"
      ], 
      "name": "Progress in Pattern Recognition, Image Analysis and Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "wear level", 
      "low wear level", 
      "steel bars", 
      "SAE 1045", 
      "tungsten carbide", 
      "experimental wear", 
      "wear area", 
      "insert wear", 
      "CNC lathe", 
      "lighting system", 
      "wear", 
      "set of experiments", 
      "carbide", 
      "statistical moments", 
      "vision system", 
      "lathe", 
      "low error rate", 
      "neural network", 
      "set of descriptors", 
      "statistical descriptors", 
      "bar", 
      "error rate", 
      "network", 
      "system", 
      "performance", 
      "descriptors", 
      "inserts", 
      "images", 
      "nearest neighbours", 
      "work", 
      "area", 
      "experiments", 
      "classifier", 
      "set", 
      "Zernike", 
      "moment", 
      "classification", 
      "rate", 
      "neuronal networks", 
      "class", 
      "goal", 
      "acquisition", 
      "neighbours", 
      "levels", 
      "patterns", 
      "XL", 
      "LP2", 
      "tool insert wear", 
      "AISI SAE 1045", 
      "precision CNC lathe", 
      "Sandvik inserts", 
      "Pulnix PE2015 B/W", 
      "PE2015 B/W", 
      "B/W", 
      "industrial zoom 70 XL", 
      "zoom 70 XL", 
      "diffuse lighting system", 
      "high wear level", 
      "Legendre descriptors", 
      "MLP neuronal network", 
      "Tool Insert Wear Classification", 
      "Insert Wear Classification", 
      "Wear Classification"
    ], 
    "name": "Tool Insert Wear Classification Using Statistical Descriptors and Neuronal Networks", 
    "pagination": "786-793", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015405939"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11578079_82"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11578079_82", 
      "https://app.dimensions.ai/details/publication/pub.1015405939"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_102.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/11578079_82"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11578079_82'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11578079_82'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11578079_82'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11578079_82'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      23 PREDICATES      89 URIs      82 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11578079_82 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne38d57ef5be5432eb8e9d0bd8e8b4d27
4 schema:datePublished 2005
5 schema:datePublishedReg 2005-01-01
6 schema:description The goal of this work is to automatically determine the level of tool insert wear based on images acquired using a vision system. Experimental wear was carried out by machining AISI SAE 1045 and 4140 steel bars in a precision CNC lathe and using Sandvik inserts of tungsten carbide. A Pulnix PE2015 B/W with an optic composed by an industrial zoom 70 XL to 1.5X and a diffuse lighting system was used for acquisition. After images were pre-processed and wear area segmented, several patterns of the wear area were obtained using a set of descriptors based on statistical moments. Two sets of experiments were carried out, the first one considering two classes, low wear level and high wear level, respectively; the second one considering three classes. Performance of three classifiers was evaluated: Lp2, k-nearest neighbours and neural networks. Zernike and Legendre descriptors show the lowest error rates using a MLP neuronal network for classifying.
7 schema:editor Ndde4744b26014c30bc86071b9931cf62
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Ndfec66b43b9540658d54b67a29515435
12 schema:keywords AISI SAE 1045
13 B/W
14 CNC lathe
15 Insert Wear Classification
16 LP2
17 Legendre descriptors
18 MLP neuronal network
19 PE2015 B/W
20 Pulnix PE2015 B/W
21 SAE 1045
22 Sandvik inserts
23 Tool Insert Wear Classification
24 Wear Classification
25 XL
26 Zernike
27 acquisition
28 area
29 bar
30 carbide
31 class
32 classification
33 classifier
34 descriptors
35 diffuse lighting system
36 error rate
37 experimental wear
38 experiments
39 goal
40 high wear level
41 images
42 industrial zoom 70 XL
43 insert wear
44 inserts
45 lathe
46 levels
47 lighting system
48 low error rate
49 low wear level
50 moment
51 nearest neighbours
52 neighbours
53 network
54 neural network
55 neuronal networks
56 patterns
57 performance
58 precision CNC lathe
59 rate
60 set
61 set of descriptors
62 set of experiments
63 statistical descriptors
64 statistical moments
65 steel bars
66 system
67 tool insert wear
68 tungsten carbide
69 vision system
70 wear
71 wear area
72 wear level
73 work
74 zoom 70 XL
75 schema:name Tool Insert Wear Classification Using Statistical Descriptors and Neuronal Networks
76 schema:pagination 786-793
77 schema:productId N756401e9667f4c84b4defaab1aed93da
78 Nd70040d01cd04234b981bba4502ae787
79 schema:publisher N1701c8d0e9b34663a4fcb987f4945634
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015405939
81 https://doi.org/10.1007/11578079_82
82 schema:sdDatePublished 2021-11-01T18:45
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N20aa20a7e61f4a29bfb70a1944e4437e
85 schema:url https://doi.org/10.1007/11578079_82
86 sgo:license sg:explorer/license/
87 sgo:sdDataset chapters
88 rdf:type schema:Chapter
89 N07e34617877e4d98967185bb685a6d0d rdf:first N2b55d3f165f74145b80b73ba39dda988
90 rdf:rest rdf:nil
91 N1701c8d0e9b34663a4fcb987f4945634 schema:name Springer Nature
92 rdf:type schema:Organisation
93 N20aa20a7e61f4a29bfb70a1944e4437e schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N253ed9548beb4a64b68d00df223e7d83 rdf:first sg:person.015406761710.45
96 rdf:rest N4a1f040d0bee465fbf6fd11d06f3ee44
97 N2b55d3f165f74145b80b73ba39dda988 schema:affiliation grid-institutes:grid.4807.b
98 schema:familyName Viñuela
99 schema:givenName M.
100 rdf:type schema:Person
101 N4a1f040d0bee465fbf6fd11d06f3ee44 rdf:first sg:person.016704603071.24
102 rdf:rest N07e34617877e4d98967185bb685a6d0d
103 N756401e9667f4c84b4defaab1aed93da schema:name dimensions_id
104 schema:value pub.1015405939
105 rdf:type schema:PropertyValue
106 Na3d1eff9c24141e583a0340ccc03935d schema:familyName Sanfeliu
107 schema:givenName Alberto
108 rdf:type schema:Person
109 Na5ffe64c4ab8423da470500106a2b119 rdf:first Nab1ee01932ff43f5967525dab8854adb
110 rdf:rest rdf:nil
111 Nab1ee01932ff43f5967525dab8854adb schema:familyName Cortés
112 schema:givenName Manuel Lazo
113 rdf:type schema:Person
114 Nd70040d01cd04234b981bba4502ae787 schema:name doi
115 schema:value 10.1007/11578079_82
116 rdf:type schema:PropertyValue
117 Ndde4744b26014c30bc86071b9931cf62 rdf:first Na3d1eff9c24141e583a0340ccc03935d
118 rdf:rest Na5ffe64c4ab8423da470500106a2b119
119 Ndfec66b43b9540658d54b67a29515435 schema:isbn 978-3-540-29850-2
120 978-3-540-32242-9
121 schema:name Progress in Pattern Recognition, Image Analysis and Applications
122 rdf:type schema:Book
123 Ne38d57ef5be5432eb8e9d0bd8e8b4d27 rdf:first sg:person.016266057305.75
124 rdf:rest N253ed9548beb4a64b68d00df223e7d83
125 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
126 schema:name Information and Computing Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
129 schema:name Artificial Intelligence and Image Processing
130 rdf:type schema:DefinedTerm
131 sg:person.015406761710.45 schema:affiliation grid-institutes:grid.4807.b
132 schema:familyName Aláiz
133 schema:givenName R.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015406761710.45
135 rdf:type schema:Person
136 sg:person.016266057305.75 schema:affiliation grid-institutes:grid.4807.b
137 schema:familyName Alegre
138 schema:givenName E.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016266057305.75
140 rdf:type schema:Person
141 sg:person.016704603071.24 schema:affiliation grid-institutes:grid.4807.b
142 schema:familyName Barreiro
143 schema:givenName J.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016704603071.24
145 rdf:type schema:Person
146 grid-institutes:grid.4807.b schema:alternateName Escuela de Ingenierías Industrial e Informática, Universidad de León, 24071, León, España
147 schema:name Escuela de Ingenierías Industrial e Informática, Universidad de León, 24071, León, España
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...