A Bayesian Network Approach to Ontology Mapping View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2005

AUTHORS

Rong Pan , Zhongli Ding , Yang Yu , Yun Peng

ABSTRACT

This paper presents our ongoing effort on developing a principled methodology for automatic ontology mapping based on BayesOWL, a probabilistic framework we developed for modeling uncertainty in semantic web. In this approach, the source and target ontologies are first translated into Bayesian networks (BN); the concept mapping between the two ontologies are treated as evidential reasoning between the two translated BNs. Probabilities needed for constructing conditional probability tables (CPT) during translation and for measuring semantic similarity during mapping are learned using text classification techniques where each concept in an ontology is associated with a set of semantically relevant text documents, which are obtained by ontology guided web mining. The basic ideas of this approach are validated by positive results from computer experiments on two small real-world ontologies. More... »

PAGES

563-577

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11574620_41

DOI

http://dx.doi.org/10.1007/11574620_41

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020052142


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland, USA", 
          "id": "http://www.grid.ac/institutes/grid.266673.0", 
          "name": [
            "Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pan", 
        "givenName": "Rong", 
        "id": "sg:person.014262570265.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014262570265.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland, USA", 
          "id": "http://www.grid.ac/institutes/grid.266673.0", 
          "name": [
            "Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Zhongli", 
        "id": "sg:person.016664243132.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016664243132.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland, USA", 
          "id": "http://www.grid.ac/institutes/grid.266673.0", 
          "name": [
            "Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Yang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland, USA", 
          "id": "http://www.grid.ac/institutes/grid.266673.0", 
          "name": [
            "Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Yun", 
        "id": "sg:person.01136741416.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136741416.72"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "This paper presents our ongoing effort on developing a principled methodology for automatic ontology mapping based on BayesOWL, a probabilistic framework we developed for modeling uncertainty in semantic web. In this approach, the source and target ontologies are first translated into Bayesian networks (BN); the concept mapping between the two ontologies are treated as evidential reasoning between the two translated BNs. Probabilities needed for constructing conditional probability tables (CPT) during translation and for measuring semantic similarity during mapping are learned using text classification techniques where each concept in an ontology is associated with a set of semantically relevant text documents, which are obtained by ontology guided web mining. The basic ideas of this approach are validated by positive results from computer experiments on two small real-world ontologies.", 
    "editor": [
      {
        "familyName": "Gil", 
        "givenName": "Yolanda", 
        "type": "Person"
      }, 
      {
        "familyName": "Motta", 
        "givenName": "Enrico", 
        "type": "Person"
      }, 
      {
        "familyName": "Benjamins", 
        "givenName": "V. Richard", 
        "type": "Person"
      }, 
      {
        "familyName": "Musen", 
        "givenName": "Mark A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11574620_41", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-29754-3", 
        "978-3-540-32082-1"
      ], 
      "name": "The Semantic Web \u2013 ISWC 2005", 
      "type": "Book"
    }, 
    "keywords": [
      "conditional probability tables", 
      "Bayesian network", 
      "ontology mapping", 
      "automatic ontology mapping", 
      "real-world ontologies", 
      "text classification techniques", 
      "relevant text documents", 
      "web mining", 
      "Semantic Web", 
      "text documents", 
      "Bayesian network approach", 
      "target ontology", 
      "principled methodology", 
      "classification techniques", 
      "semantic similarity", 
      "evidential reasoning", 
      "ontology", 
      "network approach", 
      "probabilistic framework", 
      "probability tables", 
      "basic idea", 
      "computer experiments", 
      "mining", 
      "mapping", 
      "network", 
      "concept mapping", 
      "Web", 
      "reasoning", 
      "documents", 
      "ongoing efforts", 
      "framework", 
      "set", 
      "table", 
      "methodology", 
      "idea", 
      "concept", 
      "technique", 
      "uncertainty", 
      "efforts", 
      "similarity", 
      "experiments", 
      "probability", 
      "translation", 
      "results", 
      "source", 
      "positive results", 
      "approach", 
      "paper"
    ], 
    "name": "A Bayesian Network Approach to Ontology Mapping", 
    "pagination": "563-577", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020052142"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11574620_41"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11574620_41", 
      "https://app.dimensions.ai/details/publication/pub.1020052142"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_311.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/11574620_41"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11574620_41'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11574620_41'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11574620_41'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11574620_41'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      23 PREDICATES      75 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11574620_41 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0806
4 schema:author N4fc081e952a745c5a1da7d4d4d0cbe05
5 schema:datePublished 2005
6 schema:datePublishedReg 2005-01-01
7 schema:description This paper presents our ongoing effort on developing a principled methodology for automatic ontology mapping based on BayesOWL, a probabilistic framework we developed for modeling uncertainty in semantic web. In this approach, the source and target ontologies are first translated into Bayesian networks (BN); the concept mapping between the two ontologies are treated as evidential reasoning between the two translated BNs. Probabilities needed for constructing conditional probability tables (CPT) during translation and for measuring semantic similarity during mapping are learned using text classification techniques where each concept in an ontology is associated with a set of semantically relevant text documents, which are obtained by ontology guided web mining. The basic ideas of this approach are validated by positive results from computer experiments on two small real-world ontologies.
8 schema:editor Nbab98d7b3cc84fb58ad2d8d5b778fdba
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf Nfcf08a0b54c242c3801417b76f317c1d
13 schema:keywords Bayesian network
14 Bayesian network approach
15 Semantic Web
16 Web
17 approach
18 automatic ontology mapping
19 basic idea
20 classification techniques
21 computer experiments
22 concept
23 concept mapping
24 conditional probability tables
25 documents
26 efforts
27 evidential reasoning
28 experiments
29 framework
30 idea
31 mapping
32 methodology
33 mining
34 network
35 network approach
36 ongoing efforts
37 ontology
38 ontology mapping
39 paper
40 positive results
41 principled methodology
42 probabilistic framework
43 probability
44 probability tables
45 real-world ontologies
46 reasoning
47 relevant text documents
48 results
49 semantic similarity
50 set
51 similarity
52 source
53 table
54 target ontology
55 technique
56 text classification techniques
57 text documents
58 translation
59 uncertainty
60 web mining
61 schema:name A Bayesian Network Approach to Ontology Mapping
62 schema:pagination 563-577
63 schema:productId N292c2235824a43a29166e39b58558b7e
64 N7793df82b86a49f8a128619fef52a631
65 schema:publisher N7f943a65fc3b4d94a6e9baf8ab435fc1
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020052142
67 https://doi.org/10.1007/11574620_41
68 schema:sdDatePublished 2022-06-01T22:32
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N943fcfa018624647b5a6e0a826c0e540
71 schema:url https://doi.org/10.1007/11574620_41
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N1694c60d3270455b83205646e5d45849 schema:familyName Benjamins
76 schema:givenName V. Richard
77 rdf:type schema:Person
78 N19b15f95aad74f069ecacebd17770c2a schema:familyName Motta
79 schema:givenName Enrico
80 rdf:type schema:Person
81 N292c2235824a43a29166e39b58558b7e schema:name doi
82 schema:value 10.1007/11574620_41
83 rdf:type schema:PropertyValue
84 N4fc081e952a745c5a1da7d4d4d0cbe05 rdf:first sg:person.014262570265.92
85 rdf:rest N93a385a0f50d456ab6a715b69066436a
86 N624580bd0733474d89808780629859c6 rdf:first Ne7ab741a2a6d4624960ef19d6503024d
87 rdf:rest rdf:nil
88 N7793df82b86a49f8a128619fef52a631 schema:name dimensions_id
89 schema:value pub.1020052142
90 rdf:type schema:PropertyValue
91 N7f943a65fc3b4d94a6e9baf8ab435fc1 schema:name Springer Nature
92 rdf:type schema:Organisation
93 N919cd378f97244e884bead90771e6ec6 schema:affiliation grid-institutes:grid.266673.0
94 schema:familyName Yu
95 schema:givenName Yang
96 rdf:type schema:Person
97 N93a385a0f50d456ab6a715b69066436a rdf:first sg:person.016664243132.32
98 rdf:rest Ncc44584cac4b4bd284d00c560db9acc1
99 N943fcfa018624647b5a6e0a826c0e540 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 N9558814c07304b6c9d65005dd50a00ca rdf:first N1694c60d3270455b83205646e5d45849
102 rdf:rest N624580bd0733474d89808780629859c6
103 N95b51d6e9d1144c6a7b68a7f90d46289 schema:familyName Gil
104 schema:givenName Yolanda
105 rdf:type schema:Person
106 N98614293c8d74543a414dae98c2f493f rdf:first sg:person.01136741416.72
107 rdf:rest rdf:nil
108 Nbab98d7b3cc84fb58ad2d8d5b778fdba rdf:first N95b51d6e9d1144c6a7b68a7f90d46289
109 rdf:rest Ncdb9ff4d08c041c89b70cd1d3995af01
110 Ncc44584cac4b4bd284d00c560db9acc1 rdf:first N919cd378f97244e884bead90771e6ec6
111 rdf:rest N98614293c8d74543a414dae98c2f493f
112 Ncdb9ff4d08c041c89b70cd1d3995af01 rdf:first N19b15f95aad74f069ecacebd17770c2a
113 rdf:rest N9558814c07304b6c9d65005dd50a00ca
114 Ne7ab741a2a6d4624960ef19d6503024d schema:familyName Musen
115 schema:givenName Mark A.
116 rdf:type schema:Person
117 Nfcf08a0b54c242c3801417b76f317c1d schema:isbn 978-3-540-29754-3
118 978-3-540-32082-1
119 schema:name The Semantic Web – ISWC 2005
120 rdf:type schema:Book
121 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
122 schema:name Information and Computing Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
125 schema:name Artificial Intelligence and Image Processing
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
128 schema:name Information Systems
129 rdf:type schema:DefinedTerm
130 sg:person.01136741416.72 schema:affiliation grid-institutes:grid.266673.0
131 schema:familyName Peng
132 schema:givenName Yun
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136741416.72
134 rdf:type schema:Person
135 sg:person.014262570265.92 schema:affiliation grid-institutes:grid.266673.0
136 schema:familyName Pan
137 schema:givenName Rong
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014262570265.92
139 rdf:type schema:Person
140 sg:person.016664243132.32 schema:affiliation grid-institutes:grid.266673.0
141 schema:familyName Ding
142 schema:givenName Zhongli
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016664243132.32
144 rdf:type schema:Person
145 grid-institutes:grid.266673.0 schema:alternateName Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland, USA
146 schema:name Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland, USA
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...