Machine Learning for Natural Language Processing (and Vice Versa?) View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2005

AUTHORS

Claire Cardie

ABSTRACT

Over the past 10-15 years, the influence of methods from machine learning has transformed the way that research is done in the field of natural language processing. This talk will begin by covering the history of this transformation. In particular, learning methods have proved successful in producing stand-alone text-processing components to handle a number of linguistic tasks. Moreover, these components can be combined to produce systems that exhibit shallow text-understanding capabilities: they can, for example, extract key facts from unrestricted documents in limited domains or find answers to general-purpose questions from open-domain document collections. I will briefly describe the state of the art for these practical text-processing applications, focusing on the important role that machine learning methods have played in their development. The second part of the talk will explore the role that natural language processing might play in machine learning research. Here, I will explain the kinds of text-based features that are relatively easy to incorporate into machine learning data sets. In addition, I’ll outline some problems from natural language processing that require, or could at least benefit from, new machine learning algorithms. More... »

PAGES

2-2

Book

TITLE

Knowledge Discovery in Databases: PKDD 2005

ISBN

978-3-540-29244-9
978-3-540-31665-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11564126_2

DOI

http://dx.doi.org/10.1007/11564126_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010539687


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Computer Science, Cornell University, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cardie", 
        "givenName": "Claire", 
        "id": "sg:person.0742614604.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742614604.95"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "Over the past 10-15 years, the influence of methods from machine learning has transformed the way that research is done in the field of natural language processing. This talk will begin by covering the history of this transformation. In particular, learning methods have proved successful in producing stand-alone text-processing components to handle a number of linguistic tasks. Moreover, these components can be combined to produce systems that exhibit shallow text-understanding capabilities: they can, for example, extract key facts from unrestricted documents in limited domains or find answers to general-purpose questions from open-domain document collections. I will briefly describe the state of the art for these practical text-processing applications, focusing on the important role that machine learning methods have played in their development. The second part of the talk will explore the role that natural language processing might play in machine learning research. Here, I will explain the kinds of text-based features that are relatively easy to incorporate into machine learning data sets. In addition, I\u2019ll outline some problems from natural language processing that require, or could at least benefit from, new machine learning algorithms.", 
    "editor": [
      {
        "familyName": "Jorge", 
        "givenName": "Al\u00edpio M\u00e1rio", 
        "type": "Person"
      }, 
      {
        "familyName": "Torgo", 
        "givenName": "Lu\u00eds", 
        "type": "Person"
      }, 
      {
        "familyName": "Brazdil", 
        "givenName": "Pavel", 
        "type": "Person"
      }, 
      {
        "familyName": "Camacho", 
        "givenName": "Rui", 
        "type": "Person"
      }, 
      {
        "familyName": "Gama", 
        "givenName": "Jo\u00e3o", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11564126_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-29244-9", 
        "978-3-540-31665-7"
      ], 
      "name": "Knowledge Discovery in Databases: PKDD 2005", 
      "type": "Book"
    }, 
    "name": "Machine Learning for Natural Language Processing (and Vice Versa?)", 
    "pagination": "2-2", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11564126_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "32360539a000402576e4ce36b2586e61c2c3ba8c0af96a3d1db5c20b60ba4fe4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010539687"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11564126_2", 
      "https://app.dimensions.ai/details/publication/pub.1010539687"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000018.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/11564126_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11564126_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11564126_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11564126_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11564126_2'


 

This table displays all metadata directly associated to this object as RDF triples.

85 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11564126_2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N199ed07b009649e88f04540387065327
4 schema:datePublished 2005
5 schema:datePublishedReg 2005-01-01
6 schema:description Over the past 10-15 years, the influence of methods from machine learning has transformed the way that research is done in the field of natural language processing. This talk will begin by covering the history of this transformation. In particular, learning methods have proved successful in producing stand-alone text-processing components to handle a number of linguistic tasks. Moreover, these components can be combined to produce systems that exhibit shallow text-understanding capabilities: they can, for example, extract key facts from unrestricted documents in limited domains or find answers to general-purpose questions from open-domain document collections. I will briefly describe the state of the art for these practical text-processing applications, focusing on the important role that machine learning methods have played in their development. The second part of the talk will explore the role that natural language processing might play in machine learning research. Here, I will explain the kinds of text-based features that are relatively easy to incorporate into machine learning data sets. In addition, I’ll outline some problems from natural language processing that require, or could at least benefit from, new machine learning algorithms.
7 schema:editor Ncb56c072e8a648babf154228596e09cc
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N1d171d495f3c4364a5c2c80199151e6a
12 schema:name Machine Learning for Natural Language Processing (and Vice Versa?)
13 schema:pagination 2-2
14 schema:productId N2e6d23b9fc8c490c85f45edbcb26b14c
15 N7f9b95df6c0c4d68b630ac42e822435c
16 Nc47541feb1e54f4a8c3c43343ba3ca28
17 schema:publisher N070c764200984db0965ebd0b88dbd727
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010539687
19 https://doi.org/10.1007/11564126_2
20 schema:sdDatePublished 2019-04-16T00:33
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N486600a969da46c397d10f6cb32093e6
23 schema:url http://link.springer.com/10.1007/11564126_2
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N070c764200984db0965ebd0b88dbd727 schema:location Berlin, Heidelberg
28 schema:name Springer Berlin Heidelberg
29 rdf:type schema:Organisation
30 N199ed07b009649e88f04540387065327 rdf:first sg:person.0742614604.95
31 rdf:rest rdf:nil
32 N1d171d495f3c4364a5c2c80199151e6a schema:isbn 978-3-540-29244-9
33 978-3-540-31665-7
34 schema:name Knowledge Discovery in Databases: PKDD 2005
35 rdf:type schema:Book
36 N24f58269a32e455e9e34c21b228fe3a3 schema:familyName Torgo
37 schema:givenName Luís
38 rdf:type schema:Person
39 N2819f95637dc4592bc4934c86ef8e14d schema:familyName Brazdil
40 schema:givenName Pavel
41 rdf:type schema:Person
42 N2e6d23b9fc8c490c85f45edbcb26b14c schema:name readcube_id
43 schema:value 32360539a000402576e4ce36b2586e61c2c3ba8c0af96a3d1db5c20b60ba4fe4
44 rdf:type schema:PropertyValue
45 N486600a969da46c397d10f6cb32093e6 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N70e01001eb5f4a4b91c1dd3250a4817b rdf:first Nf35ab76357734935a08cd5a6288a0b52
48 rdf:rest rdf:nil
49 N788d27fb4be34d78a649a9ce734be077 rdf:first N7f2aa69a2c674cb5be52b35f45eb8167
50 rdf:rest N70e01001eb5f4a4b91c1dd3250a4817b
51 N7f2aa69a2c674cb5be52b35f45eb8167 schema:familyName Camacho
52 schema:givenName Rui
53 rdf:type schema:Person
54 N7f9b95df6c0c4d68b630ac42e822435c schema:name dimensions_id
55 schema:value pub.1010539687
56 rdf:type schema:PropertyValue
57 N8db9c9b8168744a3996d178d97ad2bf8 rdf:first N2819f95637dc4592bc4934c86ef8e14d
58 rdf:rest N788d27fb4be34d78a649a9ce734be077
59 Nc47541feb1e54f4a8c3c43343ba3ca28 schema:name doi
60 schema:value 10.1007/11564126_2
61 rdf:type schema:PropertyValue
62 Nc917a3e615f84eeb940152fb5a787a2b rdf:first N24f58269a32e455e9e34c21b228fe3a3
63 rdf:rest N8db9c9b8168744a3996d178d97ad2bf8
64 Ncb56c072e8a648babf154228596e09cc rdf:first Nf0efb045a150483d839a24c9520974fa
65 rdf:rest Nc917a3e615f84eeb940152fb5a787a2b
66 Nf0efb045a150483d839a24c9520974fa schema:familyName Jorge
67 schema:givenName Alípio Mário
68 rdf:type schema:Person
69 Nf35ab76357734935a08cd5a6288a0b52 schema:familyName Gama
70 schema:givenName João
71 rdf:type schema:Person
72 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
73 schema:name Information and Computing Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
76 schema:name Artificial Intelligence and Image Processing
77 rdf:type schema:DefinedTerm
78 sg:person.0742614604.95 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
79 schema:familyName Cardie
80 schema:givenName Claire
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742614604.95
82 rdf:type schema:Person
83 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
84 schema:name Department of Computer Science, Cornell University, USA
85 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...