Machine Learning for Natural Language Processing (and Vice Versa?) View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2005

AUTHORS

Claire Cardie

ABSTRACT

Over the past 10-15 years, the influence of methods from machine learning has transformed the way that research is done in the field of natural language processing. This talk will begin by covering the history of this transformation. In particular, learning methods have proved successful in producing stand-alone text-processing components to handle a number of linguistic tasks. Moreover, these components can be combined to produce systems that exhibit shallow text-understanding capabilities: they can, for example, extract key facts from unrestricted documents in limited domains or find answers to general-purpose questions from open-domain document collections. I will briefly describe the state of the art for these practical text-processing applications, focusing on the important role that machine learning methods have played in their development. The second part of the talk will explore the role that natural language processing might play in machine learning research. Here, I will explain the kinds of text-based features that are relatively easy to incorporate into machine learning data sets. In addition, I’ll outline some problems from natural language processing that require, or could at least benefit from, new machine learning algorithms. More... »

PAGES

2-2

Book

TITLE

Machine Learning: ECML 2005

ISBN

978-3-540-29243-2
978-3-540-31692-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11564096_2

DOI

http://dx.doi.org/10.1007/11564096_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040807319


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Computer Science, Cornell University, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cardie", 
        "givenName": "Claire", 
        "id": "sg:person.0742614604.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742614604.95"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "Over the past 10-15 years, the influence of methods from machine learning has transformed the way that research is done in the field of natural language processing. This talk will begin by covering the history of this transformation. In particular, learning methods have proved successful in producing stand-alone text-processing components to handle a number of linguistic tasks. Moreover, these components can be combined to produce systems that exhibit shallow text-understanding capabilities: they can, for example, extract key facts from unrestricted documents in limited domains or find answers to general-purpose questions from open-domain document collections. I will briefly describe the state of the art for these practical text-processing applications, focusing on the important role that machine learning methods have played in their development. The second part of the talk will explore the role that natural language processing might play in machine learning research. Here, I will explain the kinds of text-based features that are relatively easy to incorporate into machine learning data sets. In addition, I\u2019ll outline some problems from natural language processing that require, or could at least benefit from, new machine learning algorithms.", 
    "editor": [
      {
        "familyName": "Gama", 
        "givenName": "Jo\u00e3o", 
        "type": "Person"
      }, 
      {
        "familyName": "Camacho", 
        "givenName": "Rui", 
        "type": "Person"
      }, 
      {
        "familyName": "Brazdil", 
        "givenName": "Pavel B.", 
        "type": "Person"
      }, 
      {
        "familyName": "Jorge", 
        "givenName": "Al\u00edpio M\u00e1rio", 
        "type": "Person"
      }, 
      {
        "familyName": "Torgo", 
        "givenName": "Lu\u00eds", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11564096_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-29243-2", 
        "978-3-540-31692-3"
      ], 
      "name": "Machine Learning: ECML 2005", 
      "type": "Book"
    }, 
    "name": "Machine Learning for Natural Language Processing (and Vice Versa?)", 
    "pagination": "2-2", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11564096_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c263fd3574915bf9582b1ac269a4c3489a4648d7fbd3fa216b5a4cd3f73bb015"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040807319"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11564096_2", 
      "https://app.dimensions.ai/details/publication/pub.1040807319"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000070.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/11564096_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11564096_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11564096_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11564096_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11564096_2'


 

This table displays all metadata directly associated to this object as RDF triples.

85 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11564096_2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N40fa0e932f7245d5a98df44d4c74c08d
4 schema:datePublished 2005
5 schema:datePublishedReg 2005-01-01
6 schema:description Over the past 10-15 years, the influence of methods from machine learning has transformed the way that research is done in the field of natural language processing. This talk will begin by covering the history of this transformation. In particular, learning methods have proved successful in producing stand-alone text-processing components to handle a number of linguistic tasks. Moreover, these components can be combined to produce systems that exhibit shallow text-understanding capabilities: they can, for example, extract key facts from unrestricted documents in limited domains or find answers to general-purpose questions from open-domain document collections. I will briefly describe the state of the art for these practical text-processing applications, focusing on the important role that machine learning methods have played in their development. The second part of the talk will explore the role that natural language processing might play in machine learning research. Here, I will explain the kinds of text-based features that are relatively easy to incorporate into machine learning data sets. In addition, I’ll outline some problems from natural language processing that require, or could at least benefit from, new machine learning algorithms.
7 schema:editor N0620fde5025042d692a95a85be4a8827
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N9f9a9b285cee4a8081b3410668754fd1
12 schema:name Machine Learning for Natural Language Processing (and Vice Versa?)
13 schema:pagination 2-2
14 schema:productId N3f49b30aee0040ab846140c59c39da33
15 Nc6ff89fb783740afb0b228d888d27890
16 Nda6f69743b7b41d7b76bb87031619b11
17 schema:publisher Nf7ff7b697bc64af3ad3762f97abc6d5b
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040807319
19 https://doi.org/10.1007/11564096_2
20 schema:sdDatePublished 2019-04-15T21:47
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nd90e2c3838a64ceab3227a7df7dfb9af
23 schema:url http://link.springer.com/10.1007/11564096_2
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N0620fde5025042d692a95a85be4a8827 rdf:first N947c52156b8d4deb80b0ae5830f7623f
28 rdf:rest Ne3f30cb141a7464d84bd153340e0f813
29 N3f49b30aee0040ab846140c59c39da33 schema:name doi
30 schema:value 10.1007/11564096_2
31 rdf:type schema:PropertyValue
32 N40fa0e932f7245d5a98df44d4c74c08d rdf:first sg:person.0742614604.95
33 rdf:rest rdf:nil
34 N573f704d063b42349eac047b3bea48a3 schema:familyName Torgo
35 schema:givenName Luís
36 rdf:type schema:Person
37 N61b715cb5aef4bfb8867c89b42d6216e rdf:first Nb6878cb2ed5d425cb3ec3aeffe686817
38 rdf:rest N96a72496cab64d4a8a18a8e8cdcfa2d9
39 N947c52156b8d4deb80b0ae5830f7623f schema:familyName Gama
40 schema:givenName João
41 rdf:type schema:Person
42 N94ad11feccd44e7eade4f698759dc7c4 rdf:first Nc62f0ecf8d114b028f9e9a266f96003c
43 rdf:rest N61b715cb5aef4bfb8867c89b42d6216e
44 N96a72496cab64d4a8a18a8e8cdcfa2d9 rdf:first N573f704d063b42349eac047b3bea48a3
45 rdf:rest rdf:nil
46 N9daa6b935bc9496586421c4cc13b438c schema:familyName Camacho
47 schema:givenName Rui
48 rdf:type schema:Person
49 N9f9a9b285cee4a8081b3410668754fd1 schema:isbn 978-3-540-29243-2
50 978-3-540-31692-3
51 schema:name Machine Learning: ECML 2005
52 rdf:type schema:Book
53 Nb6878cb2ed5d425cb3ec3aeffe686817 schema:familyName Jorge
54 schema:givenName Alípio Mário
55 rdf:type schema:Person
56 Nc62f0ecf8d114b028f9e9a266f96003c schema:familyName Brazdil
57 schema:givenName Pavel B.
58 rdf:type schema:Person
59 Nc6ff89fb783740afb0b228d888d27890 schema:name readcube_id
60 schema:value c263fd3574915bf9582b1ac269a4c3489a4648d7fbd3fa216b5a4cd3f73bb015
61 rdf:type schema:PropertyValue
62 Nd90e2c3838a64ceab3227a7df7dfb9af schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Nda6f69743b7b41d7b76bb87031619b11 schema:name dimensions_id
65 schema:value pub.1040807319
66 rdf:type schema:PropertyValue
67 Ne3f30cb141a7464d84bd153340e0f813 rdf:first N9daa6b935bc9496586421c4cc13b438c
68 rdf:rest N94ad11feccd44e7eade4f698759dc7c4
69 Nf7ff7b697bc64af3ad3762f97abc6d5b schema:location Berlin, Heidelberg
70 schema:name Springer Berlin Heidelberg
71 rdf:type schema:Organisation
72 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
73 schema:name Information and Computing Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
76 schema:name Artificial Intelligence and Image Processing
77 rdf:type schema:DefinedTerm
78 sg:person.0742614604.95 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
79 schema:familyName Cardie
80 schema:givenName Claire
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742614604.95
82 rdf:type schema:Person
83 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
84 schema:name Department of Computer Science, Cornell University, USA
85 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...