Support Vector Inductive Logic Programming View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005

AUTHORS

Stephen Muggleton , Huma Lodhi , Ata Amini , Michael J. E. Sternberg

ABSTRACT

In this paper we explore a topic which is at the intersection of two areas of Machine Learning: namely Support Vector Machines (SVMs) and Inductive Logic Programming (ILP). We propose a general method for constructing kernels for Support Vector Inductive Logic Programming (SVILP). The kernel not only captures the semantic and syntactic relational information contained in the data but also provides the flexibility of using arbitrary forms of structured and non-structured data coded in a relational way. While specialised kernels have been developed for strings, trees and graphs our approach uses declarative background knowledge to provide the learning bias. The use of explicitly encoded background knowledge distinguishes SVILP from existing relational kernels which in ILP-terms work purely at the atomic generalisation level. The SVILP approach is a form of generalisation relative to background knowledge, though the final combining function for the ILP-learned clauses is an SVM rather than a logical conjunction. We evaluate SVILP empirically against related approaches, including an industry-standard toxin predictor called TOPKAT. Evaluation is conducted on a new broad-ranging toxicity dataset (DSSTox). The experimental results demonstrate that our approach significantly outperforms all other approaches in the study. More... »

PAGES

163-175

References to SciGraph publications

Book

TITLE

Discovery Science

ISBN

978-3-540-29230-2
978-3-540-31698-5

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11563983_15

DOI

http://dx.doi.org/10.1007/11563983_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016817382


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Department of Computing, Imperial College, 180 Queen\u2019s Gate, SW7 2AZ, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muggleton", 
        "givenName": "Stephen", 
        "id": "sg:person.01125137176.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125137176.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Department of Computing, Imperial College, 180 Queen\u2019s Gate, SW7 2AZ, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lodhi", 
        "givenName": "Huma", 
        "id": "sg:person.014213765046.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014213765046.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Department of Biological Sciences, Imperial College, 180 Queen\u2019s Gate, SW7 2AZ, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amini", 
        "givenName": "Ata", 
        "id": "sg:person.0705207625.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705207625.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Department of Biological Sciences, Imperial College, 180 Queen\u2019s Gate, SW7 2AZ, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sternberg", 
        "givenName": "Michael J. E.", 
        "id": "sg:person.0611736450.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611736450.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1014052.1014072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004774021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.1.438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005032985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03037227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005084660", 
          "https://doi.org/10.1007/bf03037227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03037227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005084660", 
          "https://doi.org/10.1007/bf03037227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qsar.200310005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008767985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0027312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011223263", 
          "https://doi.org/10.1007/bfb0027312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009863704807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011882918", 
          "https://doi.org/10.1023/a:1009863704807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04599-2_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013074080", 
          "https://doi.org/10.1007/978-3-662-04599-2_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0027331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014361691", 
          "https://doi.org/10.1007/bfb0027331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007668716498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014772622", 
          "https://doi.org/10.1023/a:1007668716498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-39917-9_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018650134", 
          "https://doi.org/10.1007/978-3-540-39917-9_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-39917-9_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018650134", 
          "https://doi.org/10.1007/978-3-540-39917-9_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/288627.288651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024388005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03037089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029967430", 
          "https://doi.org/10.1007/bf03037089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03037089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029967430", 
          "https://doi.org/10.1007/bf03037089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0027-5107(01)00289-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032278084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0017020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033013144", 
          "https://doi.org/10.1007/bfb0017020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009815821645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035301649", 
          "https://doi.org/10.1023/a:1009815821645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.1909.0016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036184584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3540635149_50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039417045", 
          "https://doi.org/10.1007/3540635149_50"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-36468-4_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040657020", 
          "https://doi.org/10.1007/3-540-36468-4_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-36468-4_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040657020", 
          "https://doi.org/10.1007/3-540-36468-4_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-08406-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043300590", 
          "https://doi.org/10.1007/978-3-662-08406-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-08406-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043300590", 
          "https://doi.org/10.1007/978-3-662-08406-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/180139.178095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046533713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-44795-4_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051738199", 
          "https://doi.org/10.1007/3-540-44795-4_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-44795-4_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051738199", 
          "https://doi.org/10.1007/3-540-44795-4_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051745976", 
          "https://doi.org/10.1038/nature02236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051745976", 
          "https://doi.org/10.1038/nature02236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-39917-9_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053593995", 
          "https://doi.org/10.1007/978-3-540-39917-9_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-39917-9_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053593995", 
          "https://doi.org/10.1007/978-3-540-39917-9_11"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "In this paper we explore a topic which is at the intersection of two areas of Machine Learning: namely Support Vector Machines (SVMs) and Inductive Logic Programming (ILP). We propose a general method for constructing kernels for Support Vector Inductive Logic Programming (SVILP). The kernel not only captures the semantic and syntactic relational information contained in the data but also provides the flexibility of using arbitrary forms of structured and non-structured data coded in a relational way. While specialised kernels have been developed for strings, trees and graphs our approach uses declarative background knowledge to provide the learning bias. The use of explicitly encoded background knowledge distinguishes SVILP from existing relational kernels which in ILP-terms work purely at the atomic generalisation level. The SVILP approach is a form of generalisation relative to background knowledge, though the final combining function for the ILP-learned clauses is an SVM rather than a logical conjunction. We evaluate SVILP empirically against related approaches, including an industry-standard toxin predictor called TOPKAT. Evaluation is conducted on a new broad-ranging toxicity dataset (DSSTox). The experimental results demonstrate that our approach significantly outperforms all other approaches in the study.", 
    "editor": [
      {
        "familyName": "Hoffmann", 
        "givenName": "Achim", 
        "type": "Person"
      }, 
      {
        "familyName": "Motoda", 
        "givenName": "Hiroshi", 
        "type": "Person"
      }, 
      {
        "familyName": "Scheffer", 
        "givenName": "Tobias", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11563983_15", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-29230-2", 
        "978-3-540-31698-5"
      ], 
      "name": "Discovery Science", 
      "type": "Book"
    }, 
    "name": "Support Vector Inductive Logic Programming", 
    "pagination": "163-175", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016817382"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11563983_15"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5020d8c5d7279c73c1364a063fba615e04dc5f56b16ac4d065c020fc42abd1dd"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11563983_15", 
      "https://app.dimensions.ai/details/publication/pub.1016817382"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57865_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F11563983_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11563983_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11563983_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11563983_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11563983_15'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      23 PREDICATES      51 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11563983_15 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N99c1c8fa53d0409283f407afa5165b08
4 schema:citation sg:pub.10.1007/3-540-36468-4_5
5 sg:pub.10.1007/3-540-44795-4_5
6 sg:pub.10.1007/3540635149_50
7 sg:pub.10.1007/978-1-4757-2440-0
8 sg:pub.10.1007/978-3-540-39917-9_11
9 sg:pub.10.1007/978-3-540-39917-9_17
10 sg:pub.10.1007/978-3-662-04599-2_11
11 sg:pub.10.1007/978-3-662-08406-9
12 sg:pub.10.1007/bf03037089
13 sg:pub.10.1007/bf03037227
14 sg:pub.10.1007/bfb0017020
15 sg:pub.10.1007/bfb0027312
16 sg:pub.10.1007/bfb0027331
17 sg:pub.10.1023/a:1007668716498
18 sg:pub.10.1023/a:1009815821645
19 sg:pub.10.1023/a:1009863704807
20 sg:pub.10.1038/nature02236
21 https://doi.org/10.1002/qsar.200310005
22 https://doi.org/10.1016/s0027-5107(01)00289-5
23 https://doi.org/10.1073/pnas.93.1.438
24 https://doi.org/10.1098/rsta.1909.0016
25 https://doi.org/10.1145/1014052.1014072
26 https://doi.org/10.1145/180139.178095
27 https://doi.org/10.1145/288627.288651
28 schema:datePublished 2005
29 schema:datePublishedReg 2005-01-01
30 schema:description In this paper we explore a topic which is at the intersection of two areas of Machine Learning: namely Support Vector Machines (SVMs) and Inductive Logic Programming (ILP). We propose a general method for constructing kernels for Support Vector Inductive Logic Programming (SVILP). The kernel not only captures the semantic and syntactic relational information contained in the data but also provides the flexibility of using arbitrary forms of structured and non-structured data coded in a relational way. While specialised kernels have been developed for strings, trees and graphs our approach uses declarative background knowledge to provide the learning bias. The use of explicitly encoded background knowledge distinguishes SVILP from existing relational kernels which in ILP-terms work purely at the atomic generalisation level. The SVILP approach is a form of generalisation relative to background knowledge, though the final combining function for the ILP-learned clauses is an SVM rather than a logical conjunction. We evaluate SVILP empirically against related approaches, including an industry-standard toxin predictor called TOPKAT. Evaluation is conducted on a new broad-ranging toxicity dataset (DSSTox). The experimental results demonstrate that our approach significantly outperforms all other approaches in the study.
31 schema:editor N74f38c7d3c904505845c810265b6dd06
32 schema:genre chapter
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N978b91332a93455888e6fc6a0c30ac26
36 schema:name Support Vector Inductive Logic Programming
37 schema:pagination 163-175
38 schema:productId N4d15c6a6d79749f088710ca2ec66bae1
39 N5ddc65d0cada42b3ac30fed8882eba75
40 Nf1966877c9984e85b2108b05c847361f
41 schema:publisher Nc18b39aec83748e7befef5382b5b984c
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016817382
43 https://doi.org/10.1007/11563983_15
44 schema:sdDatePublished 2019-04-16T07:29
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N15913aa6adff4d9a8ef3e575f00d6eae
47 schema:url https://link.springer.com/10.1007%2F11563983_15
48 sgo:license sg:explorer/license/
49 sgo:sdDataset chapters
50 rdf:type schema:Chapter
51 N094c3a4c9b6f4898a855c40df8ecec8b schema:familyName Scheffer
52 schema:givenName Tobias
53 rdf:type schema:Person
54 N15913aa6adff4d9a8ef3e575f00d6eae schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N213849c8f77d4f6d8777b1c17fae7ec5 schema:familyName Motoda
57 schema:givenName Hiroshi
58 rdf:type schema:Person
59 N4d15c6a6d79749f088710ca2ec66bae1 schema:name dimensions_id
60 schema:value pub.1016817382
61 rdf:type schema:PropertyValue
62 N57759f044b434b3585d648aa94016853 rdf:first N213849c8f77d4f6d8777b1c17fae7ec5
63 rdf:rest Nc894441b7f634c08a232c3154775d039
64 N5ddc65d0cada42b3ac30fed8882eba75 schema:name doi
65 schema:value 10.1007/11563983_15
66 rdf:type schema:PropertyValue
67 N61f84d2c96c440e9b245e1bb25c3a6d5 rdf:first sg:person.0705207625.92
68 rdf:rest Nadbf781127bd4440b968e61418df5892
69 N74f38c7d3c904505845c810265b6dd06 rdf:first Na3180dce21eb487592d19938d63b74e8
70 rdf:rest N57759f044b434b3585d648aa94016853
71 N978b91332a93455888e6fc6a0c30ac26 schema:isbn 978-3-540-29230-2
72 978-3-540-31698-5
73 schema:name Discovery Science
74 rdf:type schema:Book
75 N99c1c8fa53d0409283f407afa5165b08 rdf:first sg:person.01125137176.85
76 rdf:rest Ne9937e2ea31b44399755d2015282600b
77 Na3180dce21eb487592d19938d63b74e8 schema:familyName Hoffmann
78 schema:givenName Achim
79 rdf:type schema:Person
80 Nadbf781127bd4440b968e61418df5892 rdf:first sg:person.0611736450.97
81 rdf:rest rdf:nil
82 Nc18b39aec83748e7befef5382b5b984c schema:location Berlin, Heidelberg
83 schema:name Springer Berlin Heidelberg
84 rdf:type schema:Organisation
85 Nc894441b7f634c08a232c3154775d039 rdf:first N094c3a4c9b6f4898a855c40df8ecec8b
86 rdf:rest rdf:nil
87 Ne9937e2ea31b44399755d2015282600b rdf:first sg:person.014213765046.70
88 rdf:rest N61f84d2c96c440e9b245e1bb25c3a6d5
89 Nf1966877c9984e85b2108b05c847361f schema:name readcube_id
90 schema:value 5020d8c5d7279c73c1364a063fba615e04dc5f56b16ac4d065c020fc42abd1dd
91 rdf:type schema:PropertyValue
92 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
93 schema:name Information and Computing Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
96 schema:name Information Systems
97 rdf:type schema:DefinedTerm
98 sg:person.01125137176.85 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
99 schema:familyName Muggleton
100 schema:givenName Stephen
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125137176.85
102 rdf:type schema:Person
103 sg:person.014213765046.70 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
104 schema:familyName Lodhi
105 schema:givenName Huma
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014213765046.70
107 rdf:type schema:Person
108 sg:person.0611736450.97 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
109 schema:familyName Sternberg
110 schema:givenName Michael J. E.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611736450.97
112 rdf:type schema:Person
113 sg:person.0705207625.92 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
114 schema:familyName Amini
115 schema:givenName Ata
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705207625.92
117 rdf:type schema:Person
118 sg:pub.10.1007/3-540-36468-4_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040657020
119 https://doi.org/10.1007/3-540-36468-4_5
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/3-540-44795-4_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051738199
122 https://doi.org/10.1007/3-540-44795-4_5
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/3540635149_50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039417045
125 https://doi.org/10.1007/3540635149_50
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/978-1-4757-2440-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027312764
128 https://doi.org/10.1007/978-1-4757-2440-0
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/978-3-540-39917-9_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053593995
131 https://doi.org/10.1007/978-3-540-39917-9_11
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/978-3-540-39917-9_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018650134
134 https://doi.org/10.1007/978-3-540-39917-9_17
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/978-3-662-04599-2_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013074080
137 https://doi.org/10.1007/978-3-662-04599-2_11
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/978-3-662-08406-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043300590
140 https://doi.org/10.1007/978-3-662-08406-9
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/bf03037089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029967430
143 https://doi.org/10.1007/bf03037089
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/bf03037227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005084660
146 https://doi.org/10.1007/bf03037227
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/bfb0017020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033013144
149 https://doi.org/10.1007/bfb0017020
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/bfb0027312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011223263
152 https://doi.org/10.1007/bfb0027312
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/bfb0027331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014361691
155 https://doi.org/10.1007/bfb0027331
156 rdf:type schema:CreativeWork
157 sg:pub.10.1023/a:1007668716498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014772622
158 https://doi.org/10.1023/a:1007668716498
159 rdf:type schema:CreativeWork
160 sg:pub.10.1023/a:1009815821645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035301649
161 https://doi.org/10.1023/a:1009815821645
162 rdf:type schema:CreativeWork
163 sg:pub.10.1023/a:1009863704807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011882918
164 https://doi.org/10.1023/a:1009863704807
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nature02236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051745976
167 https://doi.org/10.1038/nature02236
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/qsar.200310005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008767985
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/s0027-5107(01)00289-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032278084
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1073/pnas.93.1.438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005032985
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1098/rsta.1909.0016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036184584
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1145/1014052.1014072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004774021
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1145/180139.178095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046533713
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1145/288627.288651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024388005
182 rdf:type schema:CreativeWork
183 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
184 schema:name Department of Biological Sciences, Imperial College, 180 Queen’s Gate, SW7 2AZ, London, UK
185 Department of Computing, Imperial College, 180 Queen’s Gate, SW7 2AZ, London, UK
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...