On the Use of Intervals in Scientific Computing: What Is the Best Transition from Linear to Quadratic Approximation? View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2006

AUTHORS

Martine Ceberio , Vladik Kreinovich , Lev Ginzburg

ABSTRACT

In many problems from science and engineering, the measurements are reasonably accurate, so we can use linearization (= sensitivity analysis) to describe the effect of measurement errors on the result of data processing.In many practical cases, the measurement accuracy is not so good, so, to get a good estimate of the resulting error, we need to take quadratic terms into consideration – i.e., in effect, approximate the original algorithm by a quadratic function. The problem of estimating the range of a quadratic function is NP-hard, so, in the general case, we can only hope for a good heuristic.Traditional heuristic is similar to straightforward interval computations: we replace each operation with numbers with the corresponding operation of interval arithmetic (or of the arithmetic that takes partial probabilistic information into consideration). Alternatively, we can first diagonalize the quadratic matrix – and then apply the same approach to the result of diagonalization.Which heuristic is better? We show that sometimes, the traditional heuristic is better; sometimes, the new approach is better; asymptotically, which heuristic is better depends on how fast, when sorted in decreasing order, the eigenvalues decrease. More... »

PAGES

75-82

Book

TITLE

Applied Parallel Computing. State of the Art in Scientific Computing

ISBN

978-3-540-29067-4
978-3-540-33498-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11558958_9

DOI

http://dx.doi.org/10.1007/11558958_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022736776


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Texas, 79968, El Paso, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.267324.6", 
          "name": [
            "Department of Computer Science, University of Texas, 79968, El Paso, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ceberio", 
        "givenName": "Martine", 
        "id": "sg:person.07730365401.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07730365401.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Texas, 79968, El Paso, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.267324.6", 
          "name": [
            "Department of Computer Science, University of Texas, 79968, El Paso, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kreinovich", 
        "givenName": "Vladik", 
        "id": "sg:person.012602771355.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012602771355.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Biomathematics, 100 N. Country Road, 11733, Setauket, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.422751.7", 
          "name": [
            "Department of Ecology and Evolution, State University of New York, 11794, Stony Brook, NY, USA", 
            "Applied Biomathematics, 100 N. Country Road, 11733, Setauket, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ginzburg", 
        "givenName": "Lev", 
        "id": "sg:person.015102730643.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015102730643.26"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "In many problems from science and engineering, the measurements are reasonably accurate, so we can use linearization (= sensitivity analysis) to describe the effect of measurement errors on the result of data processing.In many practical cases, the measurement accuracy is not so good, so, to get a good estimate of the resulting error, we need to take quadratic terms into consideration \u2013 i.e., in effect, approximate the original algorithm by a quadratic function. The problem of estimating the range of a quadratic function is NP-hard, so, in the general case, we can only hope for a good heuristic.Traditional heuristic is similar to straightforward interval computations: we replace each operation with numbers with the corresponding operation of interval arithmetic (or of the arithmetic that takes partial probabilistic information into consideration). Alternatively, we can first diagonalize the quadratic matrix \u2013 and then apply the same approach to the result of diagonalization.Which heuristic is better? We show that sometimes, the traditional heuristic is better; sometimes, the new approach is better; asymptotically, which heuristic is better depends on how fast, when sorted in decreasing order, the eigenvalues decrease.", 
    "editor": [
      {
        "familyName": "Dongarra", 
        "givenName": "Jack", 
        "type": "Person"
      }, 
      {
        "familyName": "Madsen", 
        "givenName": "Kaj", 
        "type": "Person"
      }, 
      {
        "familyName": "Wa\u015bniewski", 
        "givenName": "Jerzy", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11558958_9", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-29067-4", 
        "978-3-540-33498-9"
      ], 
      "name": "Applied Parallel Computing. State of the Art in Scientific Computing", 
      "type": "Book"
    }, 
    "keywords": [
      "traditional heuristics", 
      "scientific computing", 
      "use of interval", 
      "best heuristics", 
      "original algorithm", 
      "interval computations", 
      "data processing", 
      "corresponding operations", 
      "heuristics", 
      "result of diagonalization", 
      "new approach", 
      "practical cases", 
      "computing", 
      "quadratic function", 
      "quadratic approximation", 
      "algorithm", 
      "error", 
      "computation", 
      "operation", 
      "NP", 
      "same approach", 
      "general case", 
      "processing", 
      "accuracy", 
      "measurement accuracy", 
      "engineering", 
      "quadratic matrix", 
      "measurement error", 
      "best estimate", 
      "order", 
      "results", 
      "linearization", 
      "science", 
      "terms", 
      "number", 
      "better transition", 
      "approximation", 
      "use", 
      "function", 
      "quadratic terms", 
      "consideration", 
      "linear", 
      "matrix", 
      "cases", 
      "diagonalization", 
      "eigenvalues", 
      "estimates", 
      "range", 
      "intervals", 
      "measurements", 
      "transition", 
      "problem", 
      "effect", 
      "approach", 
      "straightforward interval computations"
    ], 
    "name": "On the Use of Intervals in Scientific Computing: What Is the Best Transition from Linear to Quadratic Approximation?", 
    "pagination": "75-82", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022736776"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11558958_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11558958_9", 
      "https://app.dimensions.ai/details/publication/pub.1022736776"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T19:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_176.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/11558958_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11558958_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11558958_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11558958_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11558958_9'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      23 PREDICATES      81 URIs      74 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11558958_9 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author N28d71c5e4d6147f58e111b6a0389bdfe
4 schema:datePublished 2006
5 schema:datePublishedReg 2006-01-01
6 schema:description In many problems from science and engineering, the measurements are reasonably accurate, so we can use linearization (= sensitivity analysis) to describe the effect of measurement errors on the result of data processing.In many practical cases, the measurement accuracy is not so good, so, to get a good estimate of the resulting error, we need to take quadratic terms into consideration – i.e., in effect, approximate the original algorithm by a quadratic function. The problem of estimating the range of a quadratic function is NP-hard, so, in the general case, we can only hope for a good heuristic.Traditional heuristic is similar to straightforward interval computations: we replace each operation with numbers with the corresponding operation of interval arithmetic (or of the arithmetic that takes partial probabilistic information into consideration). Alternatively, we can first diagonalize the quadratic matrix – and then apply the same approach to the result of diagonalization.Which heuristic is better? We show that sometimes, the traditional heuristic is better; sometimes, the new approach is better; asymptotically, which heuristic is better depends on how fast, when sorted in decreasing order, the eigenvalues decrease.
7 schema:editor Nbccbb3d453e54690a6f73912e97a2b29
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Nd5d1ad63fbe24a448d5b90f8646b42fd
12 schema:keywords NP
13 accuracy
14 algorithm
15 approach
16 approximation
17 best estimate
18 best heuristics
19 better transition
20 cases
21 computation
22 computing
23 consideration
24 corresponding operations
25 data processing
26 diagonalization
27 effect
28 eigenvalues
29 engineering
30 error
31 estimates
32 function
33 general case
34 heuristics
35 interval computations
36 intervals
37 linear
38 linearization
39 matrix
40 measurement accuracy
41 measurement error
42 measurements
43 new approach
44 number
45 operation
46 order
47 original algorithm
48 practical cases
49 problem
50 processing
51 quadratic approximation
52 quadratic function
53 quadratic matrix
54 quadratic terms
55 range
56 result of diagonalization
57 results
58 same approach
59 science
60 scientific computing
61 straightforward interval computations
62 terms
63 traditional heuristics
64 transition
65 use
66 use of interval
67 schema:name On the Use of Intervals in Scientific Computing: What Is the Best Transition from Linear to Quadratic Approximation?
68 schema:pagination 75-82
69 schema:productId N0051df9f354a4a4896c6542db35e2bd5
70 N7ec3a9217b6f4406b3ed183c489b25d4
71 schema:publisher N9598a6354c904680afb6d3c453877bd8
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022736776
73 https://doi.org/10.1007/11558958_9
74 schema:sdDatePublished 2021-12-01T19:58
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N0950bb7212de4640b1dce27f6436a15f
77 schema:url https://doi.org/10.1007/11558958_9
78 sgo:license sg:explorer/license/
79 sgo:sdDataset chapters
80 rdf:type schema:Chapter
81 N0051df9f354a4a4896c6542db35e2bd5 schema:name dimensions_id
82 schema:value pub.1022736776
83 rdf:type schema:PropertyValue
84 N0950bb7212de4640b1dce27f6436a15f schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N17c3749311ba4384947820968ccfbdd8 rdf:first Na35fcd63a2264012a0d1f6c27ad0127d
87 rdf:rest rdf:nil
88 N28d71c5e4d6147f58e111b6a0389bdfe rdf:first sg:person.07730365401.55
89 rdf:rest Na8a1cc60fd19493aa0c865d851343944
90 N30fd9938e0bd4b93b3cbecfcb61673d4 schema:familyName Dongarra
91 schema:givenName Jack
92 rdf:type schema:Person
93 N3d19cb4dce5743389a7d2705af3a7561 rdf:first sg:person.015102730643.26
94 rdf:rest rdf:nil
95 N623f168e4bdc4ed4b3c3fac3f2029847 schema:familyName Madsen
96 schema:givenName Kaj
97 rdf:type schema:Person
98 N7ec3a9217b6f4406b3ed183c489b25d4 schema:name doi
99 schema:value 10.1007/11558958_9
100 rdf:type schema:PropertyValue
101 N8e5a664042c94f67b7d295c846d3e115 rdf:first N623f168e4bdc4ed4b3c3fac3f2029847
102 rdf:rest N17c3749311ba4384947820968ccfbdd8
103 N9598a6354c904680afb6d3c453877bd8 schema:name Springer Nature
104 rdf:type schema:Organisation
105 Na35fcd63a2264012a0d1f6c27ad0127d schema:familyName Waśniewski
106 schema:givenName Jerzy
107 rdf:type schema:Person
108 Na8a1cc60fd19493aa0c865d851343944 rdf:first sg:person.012602771355.27
109 rdf:rest N3d19cb4dce5743389a7d2705af3a7561
110 Nbccbb3d453e54690a6f73912e97a2b29 rdf:first N30fd9938e0bd4b93b3cbecfcb61673d4
111 rdf:rest N8e5a664042c94f67b7d295c846d3e115
112 Nd5d1ad63fbe24a448d5b90f8646b42fd schema:isbn 978-3-540-29067-4
113 978-3-540-33498-9
114 schema:name Applied Parallel Computing. State of the Art in Scientific Computing
115 rdf:type schema:Book
116 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
117 schema:name Information and Computing Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
120 schema:name Data Format
121 rdf:type schema:DefinedTerm
122 sg:person.012602771355.27 schema:affiliation grid-institutes:grid.267324.6
123 schema:familyName Kreinovich
124 schema:givenName Vladik
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012602771355.27
126 rdf:type schema:Person
127 sg:person.015102730643.26 schema:affiliation grid-institutes:grid.422751.7
128 schema:familyName Ginzburg
129 schema:givenName Lev
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015102730643.26
131 rdf:type schema:Person
132 sg:person.07730365401.55 schema:affiliation grid-institutes:grid.267324.6
133 schema:familyName Ceberio
134 schema:givenName Martine
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07730365401.55
136 rdf:type schema:Person
137 grid-institutes:grid.267324.6 schema:alternateName Department of Computer Science, University of Texas, 79968, El Paso, TX, USA
138 schema:name Department of Computer Science, University of Texas, 79968, El Paso, TX, USA
139 rdf:type schema:Organization
140 grid-institutes:grid.422751.7 schema:alternateName Applied Biomathematics, 100 N. Country Road, 11733, Setauket, NY, USA
141 schema:name Applied Biomathematics, 100 N. Country Road, 11733, Setauket, NY, USA
142 Department of Ecology and Evolution, State University of New York, 11794, Stony Brook, NY, USA
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...