Statistical Approach to Boar Semen Head Classification Based on Intracellular Intensity Distribution View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2005

AUTHORS

Lidia Sánchez , Nicolai Petkov , Enrique Alegre

ABSTRACT

We propose a technique to compute the fraction of boar spermatozoid heads which present an intracellular density distribution pattern hypothesized as normal by veterinary experts. This approach offers a potential for digital image processing estimation of sperm capacitation which can substitute expensive staining techniques. We extract a model distribution from a training set of heads assumed as normal by veterinary experts. We also consider two other training sets, one with heads similar to the normal pattern and another formed by heads that substantially deviate from that pattern. For each spermatozoid head, a deviation from the model distribution is computed. This produces a conditional probability distribution of that deviation for each set. Using a set of test images, we determine the fraction of normal heads in each image and compare it with the result of expert classification. This yields an absolute error below 0.25 in the 89% of the samples. More... »

PAGES

88-95

References to SciGraph publications

Book

TITLE

Computer Analysis of Images and Patterns

ISBN

978-3-540-28969-2
978-3-540-32011-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11556121_12

DOI

http://dx.doi.org/10.1007/11556121_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036519792


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Leon", 
          "id": "https://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "Department of Electrical and Electronics Engineering, University of Le\u00f3n, Campus de Vegazana s/n, 24071, Le\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "S\u00e1nchez", 
        "givenName": "Lidia", 
        "id": "sg:person.0645731325.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645731325.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Institute of Mathematics and Computing Science, University of Groningen, P.O. Box 800, 9700 AV, Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petkov", 
        "givenName": "Nicolai", 
        "id": "sg:person.01324070305.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324070305.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Leon", 
          "id": "https://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "Department of Electrical and Electronics Engineering, University of Le\u00f3n, Campus de Vegazana s/n, 24071, Le\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alegre", 
        "givenName": "Enrique", 
        "id": "sg:person.016266057305.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016266057305.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-30126-4_72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008964971", 
          "https://doi.org/10.1007/978-3-540-30126-4_72"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30126-4_72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008964971", 
          "https://doi.org/10.1007/978-3-540-30126-4_72"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0093-691x(03)00248-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012375929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0093-691x(03)00248-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012375929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2605.1999.00148.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016966057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2605.1999.00148.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016966057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0093-691x(01)00664-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018672214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0093-691x(02)01331-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048258710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0093-691x(02)01331-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048258710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/nnsp.1994.366015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093837089"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "We propose a technique to compute the fraction of boar spermatozoid heads which present an intracellular density distribution pattern hypothesized as normal by veterinary experts. This approach offers a potential for digital image processing estimation of sperm capacitation which can substitute expensive staining techniques. We extract a model distribution from a training set of heads assumed as normal by veterinary experts. We also consider two other training sets, one with heads similar to the normal pattern and another formed by heads that substantially deviate from that pattern. For each spermatozoid head, a deviation from the model distribution is computed. This produces a conditional probability distribution of that deviation for each set. Using a set of test images, we determine the fraction of normal heads in each image and compare it with the result of expert classification. This yields an absolute error below 0.25 in the 89% of the samples.", 
    "editor": [
      {
        "familyName": "Gagalowicz", 
        "givenName": "Andr\u00e9", 
        "type": "Person"
      }, 
      {
        "familyName": "Philips", 
        "givenName": "Wilfried", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11556121_12", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-28969-2", 
        "978-3-540-32011-1"
      ], 
      "name": "Computer Analysis of Images and Patterns", 
      "type": "Book"
    }, 
    "name": "Statistical Approach to Boar Semen Head Classification Based on Intracellular Intensity Distribution", 
    "pagination": "88-95", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036519792"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11556121_12"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "adf70e7e78985a69a69c3d0c47e3ea896eea6302908c406a70ffca68c5221a8c"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11556121_12", 
      "https://app.dimensions.ai/details/publication/pub.1036519792"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57883_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F11556121_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11556121_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11556121_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11556121_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11556121_12'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11556121_12 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nc64f5a0795a948d1b31a77c1c7334ee6
4 schema:citation sg:pub.10.1007/978-3-540-30126-4_72
5 https://doi.org/10.1016/s0093-691x(01)00664-1
6 https://doi.org/10.1016/s0093-691x(02)01331-6
7 https://doi.org/10.1016/s0093-691x(03)00248-6
8 https://doi.org/10.1046/j.1365-2605.1999.00148.x
9 https://doi.org/10.1109/nnsp.1994.366015
10 schema:datePublished 2005
11 schema:datePublishedReg 2005-01-01
12 schema:description We propose a technique to compute the fraction of boar spermatozoid heads which present an intracellular density distribution pattern hypothesized as normal by veterinary experts. This approach offers a potential for digital image processing estimation of sperm capacitation which can substitute expensive staining techniques. We extract a model distribution from a training set of heads assumed as normal by veterinary experts. We also consider two other training sets, one with heads similar to the normal pattern and another formed by heads that substantially deviate from that pattern. For each spermatozoid head, a deviation from the model distribution is computed. This produces a conditional probability distribution of that deviation for each set. Using a set of test images, we determine the fraction of normal heads in each image and compare it with the result of expert classification. This yields an absolute error below 0.25 in the 89% of the samples.
13 schema:editor N92e82f0b43094bc98966c11a872493ff
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf N8a3915eb592e4f80b0ed3965e0f46bb1
18 schema:name Statistical Approach to Boar Semen Head Classification Based on Intracellular Intensity Distribution
19 schema:pagination 88-95
20 schema:productId N172cda97505a45d8850c0f8b9ff5527d
21 N276c25f35b17427f86945f557378ced7
22 N623b8d74d28b4d9887022d14a6cb8fe3
23 schema:publisher Nf840a3a5165c494d864d55286c6b6005
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036519792
25 https://doi.org/10.1007/11556121_12
26 schema:sdDatePublished 2019-04-16T07:30
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher Ncde810e869e44601bbc7bd6911db9ec5
29 schema:url https://link.springer.com/10.1007%2F11556121_12
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N00bf32287abe4242bf45a812e8e9d57d rdf:first sg:person.01324070305.97
34 rdf:rest N5d2a2cd6de8443f0bc518db6470d9f82
35 N172cda97505a45d8850c0f8b9ff5527d schema:name readcube_id
36 schema:value adf70e7e78985a69a69c3d0c47e3ea896eea6302908c406a70ffca68c5221a8c
37 rdf:type schema:PropertyValue
38 N276c25f35b17427f86945f557378ced7 schema:name dimensions_id
39 schema:value pub.1036519792
40 rdf:type schema:PropertyValue
41 N5d2a2cd6de8443f0bc518db6470d9f82 rdf:first sg:person.016266057305.75
42 rdf:rest rdf:nil
43 N623b8d74d28b4d9887022d14a6cb8fe3 schema:name doi
44 schema:value 10.1007/11556121_12
45 rdf:type schema:PropertyValue
46 N8a3915eb592e4f80b0ed3965e0f46bb1 schema:isbn 978-3-540-28969-2
47 978-3-540-32011-1
48 schema:name Computer Analysis of Images and Patterns
49 rdf:type schema:Book
50 N92e82f0b43094bc98966c11a872493ff rdf:first Naf63179a07ec4f92b0e6f45efee66518
51 rdf:rest Nb3c173347c4248c28e467fdd11ec952e
52 Nae15c636898c4329958aa64dd622e696 schema:familyName Philips
53 schema:givenName Wilfried
54 rdf:type schema:Person
55 Naf63179a07ec4f92b0e6f45efee66518 schema:familyName Gagalowicz
56 schema:givenName André
57 rdf:type schema:Person
58 Nb3c173347c4248c28e467fdd11ec952e rdf:first Nae15c636898c4329958aa64dd622e696
59 rdf:rest rdf:nil
60 Nc64f5a0795a948d1b31a77c1c7334ee6 rdf:first sg:person.0645731325.04
61 rdf:rest N00bf32287abe4242bf45a812e8e9d57d
62 Ncde810e869e44601bbc7bd6911db9ec5 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Nf840a3a5165c494d864d55286c6b6005 schema:location Berlin, Heidelberg
65 schema:name Springer Berlin Heidelberg
66 rdf:type schema:Organisation
67 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
68 schema:name Information and Computing Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
71 schema:name Artificial Intelligence and Image Processing
72 rdf:type schema:DefinedTerm
73 sg:person.01324070305.97 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
74 schema:familyName Petkov
75 schema:givenName Nicolai
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324070305.97
77 rdf:type schema:Person
78 sg:person.016266057305.75 schema:affiliation https://www.grid.ac/institutes/grid.4807.b
79 schema:familyName Alegre
80 schema:givenName Enrique
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016266057305.75
82 rdf:type schema:Person
83 sg:person.0645731325.04 schema:affiliation https://www.grid.ac/institutes/grid.4807.b
84 schema:familyName Sánchez
85 schema:givenName Lidia
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645731325.04
87 rdf:type schema:Person
88 sg:pub.10.1007/978-3-540-30126-4_72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008964971
89 https://doi.org/10.1007/978-3-540-30126-4_72
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/s0093-691x(01)00664-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018672214
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/s0093-691x(02)01331-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048258710
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/s0093-691x(03)00248-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012375929
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1046/j.1365-2605.1999.00148.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016966057
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/nnsp.1994.366015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093837089
100 rdf:type schema:CreativeWork
101 https://www.grid.ac/institutes/grid.4807.b schema:alternateName University of Leon
102 schema:name Department of Electrical and Electronics Engineering, University of León, Campus de Vegazana s/n, 24071, León, Spain
103 rdf:type schema:Organization
104 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
105 schema:name Institute of Mathematics and Computing Science, University of Groningen, P.O. Box 800, 9700 AV, Groningen, The Netherlands
106 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...