Countermeasures for Collusion Attacks Exploiting Host Signal Redundancy View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005

AUTHORS

Gwenaël Doërr , Jean-Luc Dugelay

ABSTRACT

Multimedia digital data is highly redundant: successive video frames are very similar in a movie clip, most songs contain some repetitive patterns, etc. This property can consequently be exploited to successively replace each part of the signal with a similar one taken from another location in the same signal or with a combination of similar parts. Such an approach is all the more pertinent when video content is considered since such signals exhibit both temporal and spatial self-similarities. To counter such attacking strategies, it is necessary to ensure that embedded watermarks are coherent with the redundancy of the host content. To this end, both motion-compensated watermarking and self-similarities inheritance will be surveyed. More... »

PAGES

216-230

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11551492_17

DOI

http://dx.doi.org/10.1007/11551492_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017151358


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Multimedia Communications Department, Eur\u00e9com Institute, 2229 route des Cr\u00eates, B.P. 193, 06904 C\u00e9dex, Sophia-Antipolis, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Multimedia Communications Department, Eur\u00e9com Institute, 2229 route des Cr\u00eates, B.P. 193, 06904 C\u00e9dex, Sophia-Antipolis, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Do\u00ebrr", 
        "givenName": "Gwena\u00ebl", 
        "id": "sg:person.011410103415.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011410103415.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Multimedia Communications Department, Eur\u00e9com Institute, 2229 route des Cr\u00eates, B.P. 193, 06904 C\u00e9dex, Sophia-Antipolis, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Multimedia Communications Department, Eur\u00e9com Institute, 2229 route des Cr\u00eates, B.P. 193, 06904 C\u00e9dex, Sophia-Antipolis, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dugelay", 
        "givenName": "Jean-Luc", 
        "id": "sg:person.015053427343.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015053427343.37"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "Multimedia digital data is highly redundant: successive video frames are very similar in a movie clip, most songs contain some repetitive patterns, etc. This property can consequently be exploited to successively replace each part of the signal with a similar one taken from another location in the same signal or with a combination of similar parts. Such an approach is all the more pertinent when video content is considered since such signals exhibit both temporal and spatial self-similarities. To counter such attacking strategies, it is necessary to ensure that embedded watermarks are coherent with the redundancy of the host content. To this end, both motion-compensated watermarking and self-similarities inheritance will be surveyed.", 
    "editor": [
      {
        "familyName": "Barni", 
        "givenName": "Mauro", 
        "type": "Person"
      }, 
      {
        "familyName": "Cox", 
        "givenName": "Ingemar", 
        "type": "Person"
      }, 
      {
        "familyName": "Kalker", 
        "givenName": "Ton", 
        "type": "Person"
      }, 
      {
        "familyName": "Kim", 
        "givenName": "Hyoung-Joong", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11551492_17", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-28768-1", 
        "978-3-540-32052-4"
      ], 
      "name": "Digital Watermarking", 
      "type": "Book"
    }, 
    "keywords": [
      "successive video frames", 
      "video frames", 
      "video content", 
      "host content", 
      "digital data", 
      "similar parts", 
      "signal redundancy", 
      "repetitive patterns", 
      "redundancy", 
      "movie clips", 
      "watermarking", 
      "watermark", 
      "similar ones", 
      "same signal", 
      "most songs", 
      "countermeasures", 
      "such signals", 
      "signals", 
      "clips", 
      "frame", 
      "part", 
      "data", 
      "location", 
      "one", 
      "strategies", 
      "content", 
      "end", 
      "combination", 
      "patterns", 
      "songs", 
      "inheritance", 
      "properties", 
      "approach", 
      "Multimedia digital data", 
      "motion-compensated watermarking", 
      "self-similarities inheritance", 
      "Collusion Attacks Exploiting Host Signal Redundancy", 
      "Attacks Exploiting Host Signal Redundancy", 
      "Exploiting Host Signal Redundancy", 
      "Host Signal Redundancy"
    ], 
    "name": "Countermeasures for Collusion Attacks Exploiting Host Signal Redundancy", 
    "pagination": "216-230", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017151358"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11551492_17"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11551492_17", 
      "https://app.dimensions.ai/details/publication/pub.1017151358"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_235.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/11551492_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11551492_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11551492_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11551492_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11551492_17'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      23 PREDICATES      66 URIs      59 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11551492_17 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N775687cf22704006b9359ddddb798acd
4 schema:datePublished 2005
5 schema:datePublishedReg 2005-01-01
6 schema:description Multimedia digital data is highly redundant: successive video frames are very similar in a movie clip, most songs contain some repetitive patterns, etc. This property can consequently be exploited to successively replace each part of the signal with a similar one taken from another location in the same signal or with a combination of similar parts. Such an approach is all the more pertinent when video content is considered since such signals exhibit both temporal and spatial self-similarities. To counter such attacking strategies, it is necessary to ensure that embedded watermarks are coherent with the redundancy of the host content. To this end, both motion-compensated watermarking and self-similarities inheritance will be surveyed.
7 schema:editor N0dfce5e2c6304834a9dd84f205453d01
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N319fa0231e954bb7a4b4ee5b70a936d6
12 schema:keywords Attacks Exploiting Host Signal Redundancy
13 Collusion Attacks Exploiting Host Signal Redundancy
14 Exploiting Host Signal Redundancy
15 Host Signal Redundancy
16 Multimedia digital data
17 approach
18 clips
19 combination
20 content
21 countermeasures
22 data
23 digital data
24 end
25 frame
26 host content
27 inheritance
28 location
29 most songs
30 motion-compensated watermarking
31 movie clips
32 one
33 part
34 patterns
35 properties
36 redundancy
37 repetitive patterns
38 same signal
39 self-similarities inheritance
40 signal redundancy
41 signals
42 similar ones
43 similar parts
44 songs
45 strategies
46 successive video frames
47 such signals
48 video content
49 video frames
50 watermark
51 watermarking
52 schema:name Countermeasures for Collusion Attacks Exploiting Host Signal Redundancy
53 schema:pagination 216-230
54 schema:productId N5a0ea1e45a794c7e93781be09c0b161a
55 N86efbf0bcaee4c6080c0ee31b0e66ca3
56 schema:publisher N1c7bd45acd324679963d0a23aed00e36
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017151358
58 https://doi.org/10.1007/11551492_17
59 schema:sdDatePublished 2022-01-01T19:14
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N6089a9a6be91429b8219e88dde983a19
62 schema:url https://doi.org/10.1007/11551492_17
63 sgo:license sg:explorer/license/
64 sgo:sdDataset chapters
65 rdf:type schema:Chapter
66 N0dfce5e2c6304834a9dd84f205453d01 rdf:first N45d0ea66673a46cd91a366a82c6409f3
67 rdf:rest N824e32d731154dc6ad1801149a4c4e40
68 N1c7bd45acd324679963d0a23aed00e36 schema:name Springer Nature
69 rdf:type schema:Organisation
70 N2cb527fdfb234dbc97ff2e32f964e252 rdf:first sg:person.015053427343.37
71 rdf:rest rdf:nil
72 N319fa0231e954bb7a4b4ee5b70a936d6 schema:isbn 978-3-540-28768-1
73 978-3-540-32052-4
74 schema:name Digital Watermarking
75 rdf:type schema:Book
76 N45d0ea66673a46cd91a366a82c6409f3 schema:familyName Barni
77 schema:givenName Mauro
78 rdf:type schema:Person
79 N53e43848e45c4a028c0db4b542af790c schema:familyName Kalker
80 schema:givenName Ton
81 rdf:type schema:Person
82 N559c223276164b638fabff9d284867ee rdf:first N53e43848e45c4a028c0db4b542af790c
83 rdf:rest Ne0960c3e32ae4598aa347a59573c4299
84 N5a0ea1e45a794c7e93781be09c0b161a schema:name doi
85 schema:value 10.1007/11551492_17
86 rdf:type schema:PropertyValue
87 N6089a9a6be91429b8219e88dde983a19 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N775687cf22704006b9359ddddb798acd rdf:first sg:person.011410103415.45
90 rdf:rest N2cb527fdfb234dbc97ff2e32f964e252
91 N824e32d731154dc6ad1801149a4c4e40 rdf:first Nb6bedf9c4ef04e87980366255a95e702
92 rdf:rest N559c223276164b638fabff9d284867ee
93 N86efbf0bcaee4c6080c0ee31b0e66ca3 schema:name dimensions_id
94 schema:value pub.1017151358
95 rdf:type schema:PropertyValue
96 Nb6bedf9c4ef04e87980366255a95e702 schema:familyName Cox
97 schema:givenName Ingemar
98 rdf:type schema:Person
99 Ne0960c3e32ae4598aa347a59573c4299 rdf:first Nfca80aa502de46cb8b4367d5e18ad8fb
100 rdf:rest rdf:nil
101 Nfca80aa502de46cb8b4367d5e18ad8fb schema:familyName Kim
102 schema:givenName Hyoung-Joong
103 rdf:type schema:Person
104 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
105 schema:name Information and Computing Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
108 schema:name Artificial Intelligence and Image Processing
109 rdf:type schema:DefinedTerm
110 sg:person.011410103415.45 schema:affiliation grid-institutes:None
111 schema:familyName Doërr
112 schema:givenName Gwenaël
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011410103415.45
114 rdf:type schema:Person
115 sg:person.015053427343.37 schema:affiliation grid-institutes:None
116 schema:familyName Dugelay
117 schema:givenName Jean-Luc
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015053427343.37
119 rdf:type schema:Person
120 grid-institutes:None schema:alternateName Multimedia Communications Department, Eurécom Institute, 2229 route des Crêtes, B.P. 193, 06904 Cédex, Sophia-Antipolis, France
121 schema:name Multimedia Communications Department, Eurécom Institute, 2229 route des Crêtes, B.P. 193, 06904 Cédex, Sophia-Antipolis, France
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...