An MRF-ICA Based Algorithm for Image Separation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005

AUTHORS

Sen Jia , Yuntao Qian

ABSTRACT

Separation of sources from one-dimensional mixture signals such as speech has been largely explored. However, two-dimensional sources (images) separation problem has only been examined to a limited extent. The reason is that ICA is a very general-purpose statistical technique, and it does not take the spatial information into account while separating mixture images. In this paper, we introduce Markov random field model to incorporate the spatial information into ICA. MRF is considered as a powerful tool to model the joint probability distribution of the image pixels in terms of local spatial interactions. An MRF-ICA based algorithm is proposed for image separation. It is successfully demonstrated on artificial and real images. More... »

PAGES

391-395

Book

TITLE

Advances in Natural Computation

ISBN

978-3-540-28325-6
978-3-540-31858-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11539117_57

DOI

http://dx.doi.org/10.1007/11539117_57

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029343730


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "College of Computer Science, Zhejiang University, 310027, Hangzhou, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jia", 
        "givenName": "Sen", 
        "id": "sg:person.07774604370.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07774604370.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "College of Computer Science, Zhejiang University, 310027, Hangzhou, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qian", 
        "givenName": "Yuntao", 
        "id": "sg:person.07505760577.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07505760577.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0031-3203(04)00195-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054599370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.1984.4767596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.1990.118221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086366099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470845899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470845899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471221317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471221317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661117"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "Separation of sources from one-dimensional mixture signals such as speech has been largely explored. However, two-dimensional sources (images) separation problem has only been examined to a limited extent. The reason is that ICA is a very general-purpose statistical technique, and it does not take the spatial information into account while separating mixture images. In this paper, we introduce Markov random field model to incorporate the spatial information into ICA. MRF is considered as a powerful tool to model the joint probability distribution of the image pixels in terms of local spatial interactions. An MRF-ICA based algorithm is proposed for image separation. It is successfully demonstrated on artificial and real images.", 
    "editor": [
      {
        "familyName": "Wang", 
        "givenName": "Lipo", 
        "type": "Person"
      }, 
      {
        "familyName": "Chen", 
        "givenName": "Ke", 
        "type": "Person"
      }, 
      {
        "familyName": "Ong", 
        "givenName": "Yew Soon", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11539117_57", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-28325-6", 
        "978-3-540-31858-3"
      ], 
      "name": "Advances in Natural Computation", 
      "type": "Book"
    }, 
    "name": "An MRF-ICA Based Algorithm for Image Separation", 
    "pagination": "391-395", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029343730"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11539117_57"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8bc9e23e63ac1e31735739cfcca249f8e65ecdcbec8c9ed8a6ca893fb0b0a020"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11539117_57", 
      "https://app.dimensions.ai/details/publication/pub.1029343730"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118339_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F11539117_57"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11539117_57'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11539117_57'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11539117_57'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11539117_57'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11539117_57 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nb60f8ea3844644e7a90343a3682dcd90
4 schema:citation https://doi.org/10.1002/0470845899
5 https://doi.org/10.1002/0471221317
6 https://doi.org/10.1016/s0031-3203(04)00195-5
7 https://doi.org/10.1109/icpr.1990.118221
8 https://doi.org/10.1109/tpami.1984.4767596
9 schema:datePublished 2005
10 schema:datePublishedReg 2005-01-01
11 schema:description Separation of sources from one-dimensional mixture signals such as speech has been largely explored. However, two-dimensional sources (images) separation problem has only been examined to a limited extent. The reason is that ICA is a very general-purpose statistical technique, and it does not take the spatial information into account while separating mixture images. In this paper, we introduce Markov random field model to incorporate the spatial information into ICA. MRF is considered as a powerful tool to model the joint probability distribution of the image pixels in terms of local spatial interactions. An MRF-ICA based algorithm is proposed for image separation. It is successfully demonstrated on artificial and real images.
12 schema:editor N44190f7f529a410c8fbfda82f27c9cde
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N39d968985a7e4db39fa213e594375de5
17 schema:name An MRF-ICA Based Algorithm for Image Separation
18 schema:pagination 391-395
19 schema:productId N40f2c47c308a4585b11c89a455b6f877
20 N7925d5a8919d4eb88a9126f0dfd6dce5
21 N950d027b2df14fe1b0dac00dc73c932c
22 schema:publisher N5c0873c4763a4cd595a6bf3868549698
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029343730
24 https://doi.org/10.1007/11539117_57
25 schema:sdDatePublished 2019-04-16T08:09
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Nc328612f90844e73b437ac42db77eab8
28 schema:url https://link.springer.com/10.1007%2F11539117_57
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N07ef935e2208417ca84b14c86ecfb27c schema:familyName Chen
33 schema:givenName Ke
34 rdf:type schema:Person
35 N264c4963ae294189a9dcaebc0428b928 rdf:first N07ef935e2208417ca84b14c86ecfb27c
36 rdf:rest N73b8767a15f64211ac527b8e7fe5c528
37 N33be620a911f4c04911a611a54f819f9 rdf:first sg:person.07505760577.87
38 rdf:rest rdf:nil
39 N39d968985a7e4db39fa213e594375de5 schema:isbn 978-3-540-28325-6
40 978-3-540-31858-3
41 schema:name Advances in Natural Computation
42 rdf:type schema:Book
43 N40f2c47c308a4585b11c89a455b6f877 schema:name readcube_id
44 schema:value 8bc9e23e63ac1e31735739cfcca249f8e65ecdcbec8c9ed8a6ca893fb0b0a020
45 rdf:type schema:PropertyValue
46 N44190f7f529a410c8fbfda82f27c9cde rdf:first N94ae9170222c4ed3a3ee97e645b4813a
47 rdf:rest N264c4963ae294189a9dcaebc0428b928
48 N5c0873c4763a4cd595a6bf3868549698 schema:location Berlin, Heidelberg
49 schema:name Springer Berlin Heidelberg
50 rdf:type schema:Organisation
51 N73b8767a15f64211ac527b8e7fe5c528 rdf:first Ndb062dc744c14cc5bc41f054abea2aca
52 rdf:rest rdf:nil
53 N7925d5a8919d4eb88a9126f0dfd6dce5 schema:name dimensions_id
54 schema:value pub.1029343730
55 rdf:type schema:PropertyValue
56 N94ae9170222c4ed3a3ee97e645b4813a schema:familyName Wang
57 schema:givenName Lipo
58 rdf:type schema:Person
59 N950d027b2df14fe1b0dac00dc73c932c schema:name doi
60 schema:value 10.1007/11539117_57
61 rdf:type schema:PropertyValue
62 Nb60f8ea3844644e7a90343a3682dcd90 rdf:first sg:person.07774604370.25
63 rdf:rest N33be620a911f4c04911a611a54f819f9
64 Nc328612f90844e73b437ac42db77eab8 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Ndb062dc744c14cc5bc41f054abea2aca schema:familyName Ong
67 schema:givenName Yew Soon
68 rdf:type schema:Person
69 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
70 schema:name Information and Computing Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
73 schema:name Artificial Intelligence and Image Processing
74 rdf:type schema:DefinedTerm
75 sg:person.07505760577.87 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
76 schema:familyName Qian
77 schema:givenName Yuntao
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07505760577.87
79 rdf:type schema:Person
80 sg:person.07774604370.25 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
81 schema:familyName Jia
82 schema:givenName Sen
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07774604370.25
84 rdf:type schema:Person
85 https://doi.org/10.1002/0470845899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661095
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1002/0471221317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661117
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/s0031-3203(04)00195-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054599370
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1109/icpr.1990.118221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086366099
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1109/tpami.1984.4767596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742090
94 rdf:type schema:CreativeWork
95 https://www.grid.ac/institutes/grid.13402.34 schema:alternateName Zhejiang University
96 schema:name College of Computer Science, Zhejiang University, 310027, Hangzhou, P.R. China
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...