An MRF-ICA Based Algorithm for Image Separation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005

AUTHORS

Sen Jia , Yuntao Qian

ABSTRACT

Separation of sources from one-dimensional mixture signals such as speech has been largely explored. However, two-dimensional sources (images) separation problem has only been examined to a limited extent. The reason is that ICA is a very general-purpose statistical technique, and it does not take the spatial information into account while separating mixture images. In this paper, we introduce Markov random field model to incorporate the spatial information into ICA. MRF is considered as a powerful tool to model the joint probability distribution of the image pixels in terms of local spatial interactions. An MRF-ICA based algorithm is proposed for image separation. It is successfully demonstrated on artificial and real images. More... »

PAGES

391-395

Book

TITLE

Advances in Natural Computation

ISBN

978-3-540-28325-6
978-3-540-31858-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11539117_57

DOI

http://dx.doi.org/10.1007/11539117_57

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029343730


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "College of Computer Science, Zhejiang University, 310027, Hangzhou, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jia", 
        "givenName": "Sen", 
        "id": "sg:person.07774604370.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07774604370.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "College of Computer Science, Zhejiang University, 310027, Hangzhou, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qian", 
        "givenName": "Yuntao", 
        "id": "sg:person.07505760577.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07505760577.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0031-3203(04)00195-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054599370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.1984.4767596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.1990.118221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086366099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470845899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470845899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471221317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471221317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661117"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "Separation of sources from one-dimensional mixture signals such as speech has been largely explored. However, two-dimensional sources (images) separation problem has only been examined to a limited extent. The reason is that ICA is a very general-purpose statistical technique, and it does not take the spatial information into account while separating mixture images. In this paper, we introduce Markov random field model to incorporate the spatial information into ICA. MRF is considered as a powerful tool to model the joint probability distribution of the image pixels in terms of local spatial interactions. An MRF-ICA based algorithm is proposed for image separation. It is successfully demonstrated on artificial and real images.", 
    "editor": [
      {
        "familyName": "Wang", 
        "givenName": "Lipo", 
        "type": "Person"
      }, 
      {
        "familyName": "Chen", 
        "givenName": "Ke", 
        "type": "Person"
      }, 
      {
        "familyName": "Ong", 
        "givenName": "Yew Soon", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11539117_57", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-28325-6", 
        "978-3-540-31858-3"
      ], 
      "name": "Advances in Natural Computation", 
      "type": "Book"
    }, 
    "name": "An MRF-ICA Based Algorithm for Image Separation", 
    "pagination": "391-395", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029343730"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11539117_57"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8bc9e23e63ac1e31735739cfcca249f8e65ecdcbec8c9ed8a6ca893fb0b0a020"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11539117_57", 
      "https://app.dimensions.ai/details/publication/pub.1029343730"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118339_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F11539117_57"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11539117_57'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11539117_57'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11539117_57'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11539117_57'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11539117_57 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N90566dc696fc4020b0c7cfb19699320a
4 schema:citation https://doi.org/10.1002/0470845899
5 https://doi.org/10.1002/0471221317
6 https://doi.org/10.1016/s0031-3203(04)00195-5
7 https://doi.org/10.1109/icpr.1990.118221
8 https://doi.org/10.1109/tpami.1984.4767596
9 schema:datePublished 2005
10 schema:datePublishedReg 2005-01-01
11 schema:description Separation of sources from one-dimensional mixture signals such as speech has been largely explored. However, two-dimensional sources (images) separation problem has only been examined to a limited extent. The reason is that ICA is a very general-purpose statistical technique, and it does not take the spatial information into account while separating mixture images. In this paper, we introduce Markov random field model to incorporate the spatial information into ICA. MRF is considered as a powerful tool to model the joint probability distribution of the image pixels in terms of local spatial interactions. An MRF-ICA based algorithm is proposed for image separation. It is successfully demonstrated on artificial and real images.
12 schema:editor Nf4e224e54fd54c9c9cbc16b5ba6d7cd8
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N7ec2ea7fc0574055aaf44e03b828b4aa
17 schema:name An MRF-ICA Based Algorithm for Image Separation
18 schema:pagination 391-395
19 schema:productId N1386f16fc0f74fc891c49688f444c16b
20 Nb998041ea7f544e6a54c12504078346b
21 Nd77ef16c3925498dbfb9dfe2ddac6e06
22 schema:publisher N0fd159186b9441a581b7765efa93060d
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029343730
24 https://doi.org/10.1007/11539117_57
25 schema:sdDatePublished 2019-04-16T08:09
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N2f4f412ed4564c24bebe1144de40ede8
28 schema:url https://link.springer.com/10.1007%2F11539117_57
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N0fd159186b9441a581b7765efa93060d schema:location Berlin, Heidelberg
33 schema:name Springer Berlin Heidelberg
34 rdf:type schema:Organisation
35 N1386f16fc0f74fc891c49688f444c16b schema:name doi
36 schema:value 10.1007/11539117_57
37 rdf:type schema:PropertyValue
38 N2f4f412ed4564c24bebe1144de40ede8 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N3858151adbee49f6b76a5ced8c922626 schema:familyName Wang
41 schema:givenName Lipo
42 rdf:type schema:Person
43 N57289860f8b54d7fa945129e4a6ca06f rdf:first Nda308977c25541918cad4f93babd3641
44 rdf:rest N8ef3b7e6f018418bb5f19bb83344f015
45 N7ec2ea7fc0574055aaf44e03b828b4aa schema:isbn 978-3-540-28325-6
46 978-3-540-31858-3
47 schema:name Advances in Natural Computation
48 rdf:type schema:Book
49 N8ef3b7e6f018418bb5f19bb83344f015 rdf:first N8f0d1836348444c48a2514c297f5a5f3
50 rdf:rest rdf:nil
51 N8f0d1836348444c48a2514c297f5a5f3 schema:familyName Ong
52 schema:givenName Yew Soon
53 rdf:type schema:Person
54 N90566dc696fc4020b0c7cfb19699320a rdf:first sg:person.07774604370.25
55 rdf:rest Nc13e1879e04e4f4583a76301b8626a79
56 Nb998041ea7f544e6a54c12504078346b schema:name readcube_id
57 schema:value 8bc9e23e63ac1e31735739cfcca249f8e65ecdcbec8c9ed8a6ca893fb0b0a020
58 rdf:type schema:PropertyValue
59 Nc13e1879e04e4f4583a76301b8626a79 rdf:first sg:person.07505760577.87
60 rdf:rest rdf:nil
61 Nd77ef16c3925498dbfb9dfe2ddac6e06 schema:name dimensions_id
62 schema:value pub.1029343730
63 rdf:type schema:PropertyValue
64 Nda308977c25541918cad4f93babd3641 schema:familyName Chen
65 schema:givenName Ke
66 rdf:type schema:Person
67 Nf4e224e54fd54c9c9cbc16b5ba6d7cd8 rdf:first N3858151adbee49f6b76a5ced8c922626
68 rdf:rest N57289860f8b54d7fa945129e4a6ca06f
69 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
70 schema:name Information and Computing Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
73 schema:name Artificial Intelligence and Image Processing
74 rdf:type schema:DefinedTerm
75 sg:person.07505760577.87 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
76 schema:familyName Qian
77 schema:givenName Yuntao
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07505760577.87
79 rdf:type schema:Person
80 sg:person.07774604370.25 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
81 schema:familyName Jia
82 schema:givenName Sen
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07774604370.25
84 rdf:type schema:Person
85 https://doi.org/10.1002/0470845899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661095
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1002/0471221317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661117
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/s0031-3203(04)00195-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054599370
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1109/icpr.1990.118221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086366099
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1109/tpami.1984.4767596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742090
94 rdf:type schema:CreativeWork
95 https://www.grid.ac/institutes/grid.13402.34 schema:alternateName Zhejiang University
96 schema:name College of Computer Science, Zhejiang University, 310027, Hangzhou, P.R. China
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...