Ontology type: schema:Chapter
2005
AUTHORSEyal Kaplan , Moni Naor , Omer Reingold
ABSTRACTConstructions of k-wise almost independent permutations have been receiving a growing amount of attention in recent years. However, unlike the case of k-wise independent functions, the size of previously constructed families of such permutations is far from optimal. This paper gives a new method for reducing the size of families given by previous constructions. Our method relies on pseudorandom generators for space-bounded computations. In fact, all we need is a generator, that produces “pseudorandom walks” on undirected graphs with a consistent labelling. One such generator is implied by Reingold’s log-space algorithm for undirected connectivity [21,22]. We obtain families of k-wise almost independent permutations, with an optimal description length, up to a constant factor. More precisely, if the distance from uniform for any k tuple should be at most δ, then the size of the description of a permutation in the family is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(kn +\log \frac 1 {\delta})$\end{document}. More... »
PAGES354-365
Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques
ISBN
978-3-540-28239-6
978-3-540-31874-3
http://scigraph.springernature.com/pub.10.1007/11538462_30
DOIhttp://dx.doi.org/10.1007/11538462_30
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1037921863
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology and Cognitive Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Tel-Aviv University",
"id": "http://www.grid.ac/institutes/grid.12136.37",
"name": [
"Tel-Aviv University"
],
"type": "Organization"
},
"familyName": "Kaplan",
"givenName": "Eyal",
"id": "sg:person.016351357345.24",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016351357345.24"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science and Applied Math, Weizmann Institute of Science",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Department of Computer Science and Applied Math, Weizmann Institute of Science"
],
"type": "Organization"
},
"familyName": "Naor",
"givenName": "Moni",
"id": "sg:person.07776170271.83",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07776170271.83"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science and Applied Math, Weizmann Institute of Science",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Department of Computer Science and Applied Math, Weizmann Institute of Science"
],
"type": "Organization"
},
"familyName": "Reingold",
"givenName": "Omer",
"id": "sg:person.012547246003.78",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012547246003.78"
],
"type": "Person"
}
],
"datePublished": "2005",
"datePublishedReg": "2005-01-01",
"description": "Constructions of k-wise almost independent permutations have been receiving a growing amount of attention in recent years. However, unlike the case of k-wise independent functions, the size of previously constructed families of such permutations is far from optimal. This paper gives a new method for reducing the size of families given by previous constructions. Our method relies on pseudorandom generators for space-bounded computations. In fact, all we need is a generator, that produces \u201cpseudorandom walks\u201d on undirected graphs with a consistent labelling. One such generator is implied by Reingold\u2019s log-space algorithm for undirected connectivity\u00a0[21,22]. We obtain families of k-wise almost independent permutations, with an optimal description length, up to a constant factor. More precisely, if the distance from uniform for any k tuple should be at most \u03b4, then the size of the description of a permutation in the family is \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$O(kn +\\log \\frac 1 {\\delta})$\\end{document}.",
"editor": [
{
"familyName": "Chekuri",
"givenName": "Chandra",
"type": "Person"
},
{
"familyName": "Jansen",
"givenName": "Klaus",
"type": "Person"
},
{
"familyName": "Rolim",
"givenName": "Jos\u00e9 D. P.",
"type": "Person"
},
{
"familyName": "Trevisan",
"givenName": "Luca",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/11538462_30",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-540-28239-6",
"978-3-540-31874-3"
],
"name": "Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques",
"type": "Book"
},
"keywords": [
"wise independent functions",
"wise independent permutations",
"size of family",
"log-space algorithm",
"amount of attention",
"family",
"undirected connectivity",
"construction",
"recent years",
"attention",
"space-bounded computation",
"independent permutations",
"fact",
"paper",
"years",
"factors",
"cases",
"description",
"connectivity",
"uniform",
"such permutations",
"distance",
"method",
"constant factor",
"permutations",
"size",
"amount",
"previous constructions",
"function",
"labeling",
"independent functions",
"consistent labeling",
"new method",
"generator",
"length",
"such generators",
"pseudorandom generators",
"graph",
"undirected graph",
"description length",
"pseudorandom",
"computation",
"algorithm",
"tuples"
],
"name": "Derandomized Constructions of k-Wise (Almost) Independent Permutations",
"pagination": "354-365",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1037921863"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/11538462_30"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/11538462_30",
"https://app.dimensions.ai/details/publication/pub.1037921863"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:49",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_88.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/11538462_30"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11538462_30'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11538462_30'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11538462_30'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11538462_30'
This table displays all metadata directly associated to this object as RDF triples.
136 TRIPLES
23 PREDICATES
70 URIs
63 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/11538462_30 | schema:about | anzsrc-for:17 |
2 | ″ | ″ | anzsrc-for:1701 |
3 | ″ | schema:author | N4b05addc6e084893aa86b2107eab043b |
4 | ″ | schema:datePublished | 2005 |
5 | ″ | schema:datePublishedReg | 2005-01-01 |
6 | ″ | schema:description | Constructions of k-wise almost independent permutations have been receiving a growing amount of attention in recent years. However, unlike the case of k-wise independent functions, the size of previously constructed families of such permutations is far from optimal. This paper gives a new method for reducing the size of families given by previous constructions. Our method relies on pseudorandom generators for space-bounded computations. In fact, all we need is a generator, that produces “pseudorandom walks” on undirected graphs with a consistent labelling. One such generator is implied by Reingold’s log-space algorithm for undirected connectivity [21,22]. We obtain families of k-wise almost independent permutations, with an optimal description length, up to a constant factor. More precisely, if the distance from uniform for any k tuple should be at most δ, then the size of the description of a permutation in the family is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(kn +\log \frac 1 {\delta})$\end{document}. |
7 | ″ | schema:editor | N2fad642761f44d0184e37bcd6edcfe89 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N2583634f41b54535a08f39eb7a5c1dce |
12 | ″ | schema:keywords | algorithm |
13 | ″ | ″ | amount |
14 | ″ | ″ | amount of attention |
15 | ″ | ″ | attention |
16 | ″ | ″ | cases |
17 | ″ | ″ | computation |
18 | ″ | ″ | connectivity |
19 | ″ | ″ | consistent labeling |
20 | ″ | ″ | constant factor |
21 | ″ | ″ | construction |
22 | ″ | ″ | description |
23 | ″ | ″ | description length |
24 | ″ | ″ | distance |
25 | ″ | ″ | fact |
26 | ″ | ″ | factors |
27 | ″ | ″ | family |
28 | ″ | ″ | function |
29 | ″ | ″ | generator |
30 | ″ | ″ | graph |
31 | ″ | ″ | independent functions |
32 | ″ | ″ | independent permutations |
33 | ″ | ″ | labeling |
34 | ″ | ″ | length |
35 | ″ | ″ | log-space algorithm |
36 | ″ | ″ | method |
37 | ″ | ″ | new method |
38 | ″ | ″ | paper |
39 | ″ | ″ | permutations |
40 | ″ | ″ | previous constructions |
41 | ″ | ″ | pseudorandom |
42 | ″ | ″ | pseudorandom generators |
43 | ″ | ″ | recent years |
44 | ″ | ″ | size |
45 | ″ | ″ | size of family |
46 | ″ | ″ | space-bounded computation |
47 | ″ | ″ | such generators |
48 | ″ | ″ | such permutations |
49 | ″ | ″ | tuples |
50 | ″ | ″ | undirected connectivity |
51 | ″ | ″ | undirected graph |
52 | ″ | ″ | uniform |
53 | ″ | ″ | wise independent functions |
54 | ″ | ″ | wise independent permutations |
55 | ″ | ″ | years |
56 | ″ | schema:name | Derandomized Constructions of k-Wise (Almost) Independent Permutations |
57 | ″ | schema:pagination | 354-365 |
58 | ″ | schema:productId | Nd0a17203aae443caafe2df42112b41c3 |
59 | ″ | ″ | Ne53105320ca941678040da3e5ff5bb72 |
60 | ″ | schema:publisher | N71c0ba225b9f42b5851e347e40cb7437 |
61 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1037921863 |
62 | ″ | ″ | https://doi.org/10.1007/11538462_30 |
63 | ″ | schema:sdDatePublished | 2022-05-20T07:49 |
64 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
65 | ″ | schema:sdPublisher | N758dbd7e16594457b262d670eb746823 |
66 | ″ | schema:url | https://doi.org/10.1007/11538462_30 |
67 | ″ | sgo:license | sg:explorer/license/ |
68 | ″ | sgo:sdDataset | chapters |
69 | ″ | rdf:type | schema:Chapter |
70 | N208bd3b08898474490b8353a8d8fc1ba | rdf:first | Nc667284ca6574bfd8ac7207aa7708a0e |
71 | ″ | rdf:rest | N8396f1af58cf4940b8336d1c6d3ec3f9 |
72 | N2583634f41b54535a08f39eb7a5c1dce | schema:isbn | 978-3-540-28239-6 |
73 | ″ | ″ | 978-3-540-31874-3 |
74 | ″ | schema:name | Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques |
75 | ″ | rdf:type | schema:Book |
76 | N2fad642761f44d0184e37bcd6edcfe89 | rdf:first | N521453f087fa4fb4a6c642b5067d7935 |
77 | ″ | rdf:rest | N208bd3b08898474490b8353a8d8fc1ba |
78 | N4b05addc6e084893aa86b2107eab043b | rdf:first | sg:person.016351357345.24 |
79 | ″ | rdf:rest | N6e7fbc13c42e41c696e345193f761557 |
80 | N521453f087fa4fb4a6c642b5067d7935 | schema:familyName | Chekuri |
81 | ″ | schema:givenName | Chandra |
82 | ″ | rdf:type | schema:Person |
83 | N6e7fbc13c42e41c696e345193f761557 | rdf:first | sg:person.07776170271.83 |
84 | ″ | rdf:rest | N8515d4a3ff3c49a6aec1351785296115 |
85 | N71c0ba225b9f42b5851e347e40cb7437 | schema:name | Springer Nature |
86 | ″ | rdf:type | schema:Organisation |
87 | N758dbd7e16594457b262d670eb746823 | schema:name | Springer Nature - SN SciGraph project |
88 | ″ | rdf:type | schema:Organization |
89 | N8396f1af58cf4940b8336d1c6d3ec3f9 | rdf:first | Nfdae9034bdcf4902a7fe72ab9f6f652c |
90 | ″ | rdf:rest | Ncc700f7927684de8b897f826da48813b |
91 | N8515d4a3ff3c49a6aec1351785296115 | rdf:first | sg:person.012547246003.78 |
92 | ″ | rdf:rest | rdf:nil |
93 | Na2da0ae43bbe464b8d55b8fcdb908990 | schema:familyName | Trevisan |
94 | ″ | schema:givenName | Luca |
95 | ″ | rdf:type | schema:Person |
96 | Nc667284ca6574bfd8ac7207aa7708a0e | schema:familyName | Jansen |
97 | ″ | schema:givenName | Klaus |
98 | ″ | rdf:type | schema:Person |
99 | Ncc700f7927684de8b897f826da48813b | rdf:first | Na2da0ae43bbe464b8d55b8fcdb908990 |
100 | ″ | rdf:rest | rdf:nil |
101 | Nd0a17203aae443caafe2df42112b41c3 | schema:name | doi |
102 | ″ | schema:value | 10.1007/11538462_30 |
103 | ″ | rdf:type | schema:PropertyValue |
104 | Ne53105320ca941678040da3e5ff5bb72 | schema:name | dimensions_id |
105 | ″ | schema:value | pub.1037921863 |
106 | ″ | rdf:type | schema:PropertyValue |
107 | Nfdae9034bdcf4902a7fe72ab9f6f652c | schema:familyName | Rolim |
108 | ″ | schema:givenName | José D. P. |
109 | ″ | rdf:type | schema:Person |
110 | anzsrc-for:17 | schema:inDefinedTermSet | anzsrc-for: |
111 | ″ | schema:name | Psychology and Cognitive Sciences |
112 | ″ | rdf:type | schema:DefinedTerm |
113 | anzsrc-for:1701 | schema:inDefinedTermSet | anzsrc-for: |
114 | ″ | schema:name | Psychology |
115 | ″ | rdf:type | schema:DefinedTerm |
116 | sg:person.012547246003.78 | schema:affiliation | grid-institutes:None |
117 | ″ | schema:familyName | Reingold |
118 | ″ | schema:givenName | Omer |
119 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012547246003.78 |
120 | ″ | rdf:type | schema:Person |
121 | sg:person.016351357345.24 | schema:affiliation | grid-institutes:grid.12136.37 |
122 | ″ | schema:familyName | Kaplan |
123 | ″ | schema:givenName | Eyal |
124 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016351357345.24 |
125 | ″ | rdf:type | schema:Person |
126 | sg:person.07776170271.83 | schema:affiliation | grid-institutes:None |
127 | ″ | schema:familyName | Naor |
128 | ″ | schema:givenName | Moni |
129 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07776170271.83 |
130 | ″ | rdf:type | schema:Person |
131 | grid-institutes:None | schema:alternateName | Department of Computer Science and Applied Math, Weizmann Institute of Science |
132 | ″ | schema:name | Department of Computer Science and Applied Math, Weizmann Institute of Science |
133 | ″ | rdf:type | schema:Organization |
134 | grid-institutes:grid.12136.37 | schema:alternateName | Tel-Aviv University |
135 | ″ | schema:name | Tel-Aviv University |
136 | ″ | rdf:type | schema:Organization |