A Fast Technique for Constructing Evolutionary Tree with the Application of Compact Sets View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005

AUTHORS

Kun-Ming Yu , Yu-Weir Chang , YaoHua Yang , Jiayi Zhou , Chun-Yuan Lin , Chuan Yi Tang

ABSTRACT

Constructing an evolutionary tree has many techniques, and usually biologists use distance matrix on this activity. The evolutionary tree can assist in taxonomy for biologists to analyze the phylogeny. In this paper, we specifically employ the compact sets to convert the original matrix into several small matrices for constructing evolutionary tree in parallel. By the properties of compact sets, we do not spend much time and do keep the correct relations among species. Besides, we adopt both Human Mitochondrial DNAs and randomly generated matrix as input data in the experiments. In comparison with conventional technique, the experimental results show that utilizing compact sets can definitely construct the evolutionary tree in a reasonable time. More... »

PAGES

346-354

Book

TITLE

Parallel Computing Technologies

ISBN

978-3-540-28126-9
978-3-540-31826-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11535294_30

DOI

http://dx.doi.org/10.1007/11535294_30

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007993864


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0603", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Evolutionary Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chung Hua University", 
          "id": "https://www.grid.ac/institutes/grid.411655.2", 
          "name": [
            "Department of Computer Science and Information Engineering, Chung Hua University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Kun-Ming", 
        "id": "sg:person.015566066077.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015566066077.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chung Hua University", 
          "id": "https://www.grid.ac/institutes/grid.411655.2", 
          "name": [
            "Department of Computer Science and Information Engineering, Chung Hua University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Yu-Weir", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chung Hua University", 
          "id": "https://www.grid.ac/institutes/grid.411655.2", 
          "name": [
            "Department of Information Management, Chung Hua University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "YaoHua", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chung Hua University", 
          "id": "https://www.grid.ac/institutes/grid.411655.2", 
          "name": [
            "Department of Computer Science and Information Engineering, Chung Hua University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Jiayi", 
        "id": "sg:person.016405705547.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016405705547.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute of Molecular and Cellular Biology, National Tsing Hua University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Chun-Yuan", 
        "id": "sg:person.0665540554.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665540554.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Computer Science, National Tsing Hua University, 300, Hsinchu, Taiwan, R.O.C."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Chuan Yi", 
        "id": "sg:person.01312526135.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312526135.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01990522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000382553", 
          "https://doi.org/10.1007/bf01990522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01990522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000382553", 
          "https://doi.org/10.1007/bf01990522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01188585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004227195", 
          "https://doi.org/10.1007/bf01188585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01188585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004227195", 
          "https://doi.org/10.1007/bf01188585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-2001-2_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007977430", 
          "https://doi.org/10.1007/978-1-4684-2001-2_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0190(88)90090-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012715551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5564(82)90027-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013420601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01733209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014931197", 
          "https://doi.org/10.1007/bf01733209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01733209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014931197", 
          "https://doi.org/10.1007/bf01733209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0190(92)90215-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025073539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02458863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027538383", 
          "https://doi.org/10.1007/bf02458863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02458863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027538383", 
          "https://doi.org/10.1007/bf02458863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0196-8858(82)80004-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032724280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5193(84)80103-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035919827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0190(96)00017-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037556512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009885610075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044701682", 
          "https://doi.org/10.1023/a:1009885610075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5193(83)90296-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051993497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0403001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062844592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0406041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062844846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079752303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511574931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098674485"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "Constructing an evolutionary tree has many techniques, and usually biologists use distance matrix on this activity. The evolutionary tree can assist in taxonomy for biologists to analyze the phylogeny. In this paper, we specifically employ the compact sets to convert the original matrix into several small matrices for constructing evolutionary tree in parallel. By the properties of compact sets, we do not spend much time and do keep the correct relations among species. Besides, we adopt both Human Mitochondrial DNAs and randomly generated matrix as input data in the experiments. In comparison with conventional technique, the experimental results show that utilizing compact sets can definitely construct the evolutionary tree in a reasonable time.", 
    "editor": [
      {
        "familyName": "Malyshkin", 
        "givenName": "Victor", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11535294_30", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-28126-9", 
        "978-3-540-31826-2"
      ], 
      "name": "Parallel Computing Technologies", 
      "type": "Book"
    }, 
    "name": "A Fast Technique for Constructing Evolutionary Tree with the Application of Compact Sets", 
    "pagination": "346-354", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007993864"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11535294_30"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "26156963626b960dc1e428985cecae0cf1c46d1398f12f1304d137246298237e"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11535294_30", 
      "https://app.dimensions.ai/details/publication/pub.1007993864"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29212_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F11535294_30"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11535294_30'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11535294_30'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11535294_30'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11535294_30'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      23 PREDICATES      44 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11535294_30 schema:about anzsrc-for:06
2 anzsrc-for:0603
3 schema:author N7e91177d4b0d491db6a50465863d2b12
4 schema:citation sg:pub.10.1007/978-1-4684-2001-2_9
5 sg:pub.10.1007/bf01188585
6 sg:pub.10.1007/bf01733209
7 sg:pub.10.1007/bf01990522
8 sg:pub.10.1007/bf02458863
9 sg:pub.10.1023/a:1009885610075
10 https://doi.org/10.1016/0020-0190(88)90090-7
11 https://doi.org/10.1016/0020-0190(92)90215-h
12 https://doi.org/10.1016/0020-0190(96)00017-8
13 https://doi.org/10.1016/0022-5193(83)90296-5
14 https://doi.org/10.1016/0025-5564(82)90027-x
15 https://doi.org/10.1016/s0022-5193(84)80103-4
16 https://doi.org/10.1016/s0196-8858(82)80004-3
17 https://doi.org/10.1017/cbo9780511574931
18 https://doi.org/10.1093/oxfordjournals.molbev.a040454
19 https://doi.org/10.1137/0403001
20 https://doi.org/10.1137/0406041
21 schema:datePublished 2005
22 schema:datePublishedReg 2005-01-01
23 schema:description Constructing an evolutionary tree has many techniques, and usually biologists use distance matrix on this activity. The evolutionary tree can assist in taxonomy for biologists to analyze the phylogeny. In this paper, we specifically employ the compact sets to convert the original matrix into several small matrices for constructing evolutionary tree in parallel. By the properties of compact sets, we do not spend much time and do keep the correct relations among species. Besides, we adopt both Human Mitochondrial DNAs and randomly generated matrix as input data in the experiments. In comparison with conventional technique, the experimental results show that utilizing compact sets can definitely construct the evolutionary tree in a reasonable time.
24 schema:editor Nb809bb1df0db47bf9d7f87c0824de646
25 schema:genre chapter
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N712a1a08bde44150888391a95e0fa05b
29 schema:name A Fast Technique for Constructing Evolutionary Tree with the Application of Compact Sets
30 schema:pagination 346-354
31 schema:productId N408836313087457f97d35cfddd1477f8
32 N5fa4339a87eb47aab36f96b9201b2ef3
33 Nd0cfeac14e5041a48a0be01e7b321c12
34 schema:publisher Na678f4a183ba4e8fb1d4cd6ff3be6bb5
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007993864
36 https://doi.org/10.1007/11535294_30
37 schema:sdDatePublished 2019-04-16T08:03
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Nd960a8b28f124f98a3f5c114c55db433
40 schema:url https://link.springer.com/10.1007%2F11535294_30
41 sgo:license sg:explorer/license/
42 sgo:sdDataset chapters
43 rdf:type schema:Chapter
44 N408836313087457f97d35cfddd1477f8 schema:name doi
45 schema:value 10.1007/11535294_30
46 rdf:type schema:PropertyValue
47 N44d931fa09bd43c682b8804e2d368268 schema:familyName Malyshkin
48 schema:givenName Victor
49 rdf:type schema:Person
50 N5fa4339a87eb47aab36f96b9201b2ef3 schema:name readcube_id
51 schema:value 26156963626b960dc1e428985cecae0cf1c46d1398f12f1304d137246298237e
52 rdf:type schema:PropertyValue
53 N67b701801a45445ba96c0ac9cf9f7cbc schema:affiliation https://www.grid.ac/institutes/grid.411655.2
54 schema:familyName Yang
55 schema:givenName YaoHua
56 rdf:type schema:Person
57 N712a1a08bde44150888391a95e0fa05b schema:isbn 978-3-540-28126-9
58 978-3-540-31826-2
59 schema:name Parallel Computing Technologies
60 rdf:type schema:Book
61 N7e91177d4b0d491db6a50465863d2b12 rdf:first sg:person.015566066077.39
62 rdf:rest Ne5a1b135f6544981abec30985cd8b2d1
63 N8494dd165731448aabd08cd13179d5ad rdf:first sg:person.01312526135.27
64 rdf:rest rdf:nil
65 Na678f4a183ba4e8fb1d4cd6ff3be6bb5 schema:location Berlin, Heidelberg
66 schema:name Springer Berlin Heidelberg
67 rdf:type schema:Organisation
68 Nb613a511f1984cb88301d13c7f623993 schema:name Institute of Molecular and Cellular Biology, National Tsing Hua University
69 rdf:type schema:Organization
70 Nb809bb1df0db47bf9d7f87c0824de646 rdf:first N44d931fa09bd43c682b8804e2d368268
71 rdf:rest rdf:nil
72 Nbf396fef789b49668d48922e985b07cf rdf:first sg:person.0665540554.26
73 rdf:rest N8494dd165731448aabd08cd13179d5ad
74 Nc8fb810c70fe4eb49e0763729c872bdd schema:affiliation https://www.grid.ac/institutes/grid.411655.2
75 schema:familyName Chang
76 schema:givenName Yu-Weir
77 rdf:type schema:Person
78 Nd0cfeac14e5041a48a0be01e7b321c12 schema:name dimensions_id
79 schema:value pub.1007993864
80 rdf:type schema:PropertyValue
81 Nd3951a0fd3c8439d985aa05857f5e494 rdf:first sg:person.016405705547.11
82 rdf:rest Nbf396fef789b49668d48922e985b07cf
83 Nd960a8b28f124f98a3f5c114c55db433 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Ne3e5620eddb6479daaeb5530e7bcc034 rdf:first N67b701801a45445ba96c0ac9cf9f7cbc
86 rdf:rest Nd3951a0fd3c8439d985aa05857f5e494
87 Ne5a1b135f6544981abec30985cd8b2d1 rdf:first Nc8fb810c70fe4eb49e0763729c872bdd
88 rdf:rest Ne3e5620eddb6479daaeb5530e7bcc034
89 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
90 schema:name Biological Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0603 schema:inDefinedTermSet anzsrc-for:
93 schema:name Evolutionary Biology
94 rdf:type schema:DefinedTerm
95 sg:person.01312526135.27 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
96 schema:familyName Tang
97 schema:givenName Chuan Yi
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312526135.27
99 rdf:type schema:Person
100 sg:person.015566066077.39 schema:affiliation https://www.grid.ac/institutes/grid.411655.2
101 schema:familyName Yu
102 schema:givenName Kun-Ming
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015566066077.39
104 rdf:type schema:Person
105 sg:person.016405705547.11 schema:affiliation https://www.grid.ac/institutes/grid.411655.2
106 schema:familyName Zhou
107 schema:givenName Jiayi
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016405705547.11
109 rdf:type schema:Person
110 sg:person.0665540554.26 schema:affiliation Nb613a511f1984cb88301d13c7f623993
111 schema:familyName Lin
112 schema:givenName Chun-Yuan
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665540554.26
114 rdf:type schema:Person
115 sg:pub.10.1007/978-1-4684-2001-2_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007977430
116 https://doi.org/10.1007/978-1-4684-2001-2_9
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/bf01188585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004227195
119 https://doi.org/10.1007/bf01188585
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/bf01733209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014931197
122 https://doi.org/10.1007/bf01733209
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bf01990522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000382553
125 https://doi.org/10.1007/bf01990522
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/bf02458863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027538383
128 https://doi.org/10.1007/bf02458863
129 rdf:type schema:CreativeWork
130 sg:pub.10.1023/a:1009885610075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044701682
131 https://doi.org/10.1023/a:1009885610075
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0020-0190(88)90090-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012715551
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0020-0190(92)90215-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1025073539
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0020-0190(96)00017-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037556512
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/0022-5193(83)90296-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051993497
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/0025-5564(82)90027-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013420601
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s0022-5193(84)80103-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035919827
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s0196-8858(82)80004-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032724280
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1017/cbo9780511574931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098674485
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1093/oxfordjournals.molbev.a040454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079752303
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1137/0403001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062844592
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1137/0406041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062844846
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.38348.34 schema:alternateName National Tsing Hua University
156 schema:name Department of Computer Science, National Tsing Hua University, 300, Hsinchu, Taiwan, R.O.C.
157 rdf:type schema:Organization
158 https://www.grid.ac/institutes/grid.411655.2 schema:alternateName Chung Hua University
159 schema:name Department of Computer Science and Information Engineering, Chung Hua University
160 Department of Information Management, Chung Hua University
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...