2005
AUTHORS ABSTRACTIn many important applications, a collection of mutually distrustful parties must perform private computation over multisets. Each party’s input to the function is his private input multiset. In order to protect these private sets, the players perform privacy-preserving computation; that is, no party learns more information about other parties’ private input sets than what can be deduced from the result. In this paper, we propose efficient techniques for privacy-preserving operations on multisets. By building a framework of multiset operations, employing the mathematical properties of polynomials, we design efficient, secure, and composable methods to enable privacy-preserving computation of the union, intersection, and element reduction operations. We apply these techniques to a wide range of practical problems, achieving more efficient results than those of previous work. More... »
PAGES241-257
Advances in Cryptology – CRYPTO 2005
ISBN
978-3-540-28114-6
978-3-540-31870-5
http://scigraph.springernature.com/pub.10.1007/11535218_15
DOIhttp://dx.doi.org/10.1007/11535218_15
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1039851897
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Data Format",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Carnegie Mellon University, 15213, Pittsburgh, PA, USA",
"id": "http://www.grid.ac/institutes/grid.147455.6",
"name": [
"Carnegie Mellon University, 15213, Pittsburgh, PA, USA"
],
"type": "Organization"
},
"familyName": "Kissner",
"givenName": "Lea",
"id": "sg:person.010203554137.83",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010203554137.83"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Carnegie Mellon University, 15213, Pittsburgh, PA, USA",
"id": "http://www.grid.ac/institutes/grid.147455.6",
"name": [
"Carnegie Mellon University, 15213, Pittsburgh, PA, USA"
],
"type": "Organization"
},
"familyName": "Song",
"givenName": "Dawn",
"id": "sg:person.01143152610.86",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143152610.86"
],
"type": "Person"
}
],
"datePublished": "2005",
"datePublishedReg": "2005-01-01",
"description": "In many important applications, a collection of mutually distrustful parties must perform private computation over multisets. Each party\u2019s input to the function is his private input multiset. In order to protect these private sets, the players perform privacy-preserving computation; that is, no party learns more information about other parties\u2019 private input sets than what can be deduced from the result. In this paper, we propose efficient techniques for privacy-preserving operations on multisets. By building a framework of multiset operations, employing the mathematical properties of polynomials, we design efficient, secure, and composable methods to enable privacy-preserving computation of the union, intersection, and element reduction operations. We apply these techniques to a wide range of practical problems, achieving more efficient results than those of previous work.",
"editor": [
{
"familyName": "Shoup",
"givenName": "Victor",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/11535218_15",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-540-28114-6",
"978-3-540-31870-5"
],
"name": "Advances in Cryptology \u2013 CRYPTO 2005",
"type": "Book"
},
"keywords": [
"privacy-preserving computation",
"private input sets",
"privacy-preserving operations",
"private computation",
"private set",
"composable method",
"multiset operations",
"party\u2019s input",
"distrustful parties",
"input set",
"efficient results",
"reduction operations",
"set operations",
"efficient technique",
"computation",
"input multiset",
"multiset",
"important applications",
"practical problems",
"previous work",
"set",
"more information",
"operation",
"mathematical properties",
"input",
"parties",
"technique",
"framework",
"information",
"applications",
"collection",
"wide range",
"players",
"work",
"intersection",
"order",
"results",
"method",
"polynomials",
"function",
"range",
"Union",
"properties",
"problem",
"paper"
],
"name": "Privacy-Preserving Set Operations",
"pagination": "241-257",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1039851897"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/11535218_15"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/11535218_15",
"https://app.dimensions.ai/details/publication/pub.1039851897"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:49",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_96.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/11535218_15"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11535218_15'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11535218_15'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11535218_15'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11535218_15'
This table displays all metadata directly associated to this object as RDF triples.
112 TRIPLES
23 PREDICATES
71 URIs
64 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/11535218_15 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0804 |
3 | ″ | schema:author | N940c8c301eb842c387aabe2076f61978 |
4 | ″ | schema:datePublished | 2005 |
5 | ″ | schema:datePublishedReg | 2005-01-01 |
6 | ″ | schema:description | In many important applications, a collection of mutually distrustful parties must perform private computation over multisets. Each party’s input to the function is his private input multiset. In order to protect these private sets, the players perform privacy-preserving computation; that is, no party learns more information about other parties’ private input sets than what can be deduced from the result. In this paper, we propose efficient techniques for privacy-preserving operations on multisets. By building a framework of multiset operations, employing the mathematical properties of polynomials, we design efficient, secure, and composable methods to enable privacy-preserving computation of the union, intersection, and element reduction operations. We apply these techniques to a wide range of practical problems, achieving more efficient results than those of previous work. |
7 | ″ | schema:editor | N871d5d2ddcb144b1a3e07ef2355b49c4 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | N65679600b85540989408762d5cd7d679 |
12 | ″ | schema:keywords | Union |
13 | ″ | ″ | applications |
14 | ″ | ″ | collection |
15 | ″ | ″ | composable method |
16 | ″ | ″ | computation |
17 | ″ | ″ | distrustful parties |
18 | ″ | ″ | efficient results |
19 | ″ | ″ | efficient technique |
20 | ″ | ″ | framework |
21 | ″ | ″ | function |
22 | ″ | ″ | important applications |
23 | ″ | ″ | information |
24 | ″ | ″ | input |
25 | ″ | ″ | input multiset |
26 | ″ | ″ | input set |
27 | ″ | ″ | intersection |
28 | ″ | ″ | mathematical properties |
29 | ″ | ″ | method |
30 | ″ | ″ | more information |
31 | ″ | ″ | multiset |
32 | ″ | ″ | multiset operations |
33 | ″ | ″ | operation |
34 | ″ | ″ | order |
35 | ″ | ″ | paper |
36 | ″ | ″ | parties |
37 | ″ | ″ | party’s input |
38 | ″ | ″ | players |
39 | ″ | ″ | polynomials |
40 | ″ | ″ | practical problems |
41 | ″ | ″ | previous work |
42 | ″ | ″ | privacy-preserving computation |
43 | ″ | ″ | privacy-preserving operations |
44 | ″ | ″ | private computation |
45 | ″ | ″ | private input sets |
46 | ″ | ″ | private set |
47 | ″ | ″ | problem |
48 | ″ | ″ | properties |
49 | ″ | ″ | range |
50 | ″ | ″ | reduction operations |
51 | ″ | ″ | results |
52 | ″ | ″ | set |
53 | ″ | ″ | set operations |
54 | ″ | ″ | technique |
55 | ″ | ″ | wide range |
56 | ″ | ″ | work |
57 | ″ | schema:name | Privacy-Preserving Set Operations |
58 | ″ | schema:pagination | 241-257 |
59 | ″ | schema:productId | Nb006c4cf566d4aa7aae76b9f729e6bcf |
60 | ″ | ″ | Nfaad0267fd2d424593eafb215051335c |
61 | ″ | schema:publisher | N80f2b757ec3b43408839e09ed7b459f7 |
62 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1039851897 |
63 | ″ | ″ | https://doi.org/10.1007/11535218_15 |
64 | ″ | schema:sdDatePublished | 2022-05-20T07:49 |
65 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
66 | ″ | schema:sdPublisher | N4eb38d6bb8df4ba8855dd84b1c252a6d |
67 | ″ | schema:url | https://doi.org/10.1007/11535218_15 |
68 | ″ | sgo:license | sg:explorer/license/ |
69 | ″ | sgo:sdDataset | chapters |
70 | ″ | rdf:type | schema:Chapter |
71 | N4eb38d6bb8df4ba8855dd84b1c252a6d | schema:name | Springer Nature - SN SciGraph project |
72 | ″ | rdf:type | schema:Organization |
73 | N65679600b85540989408762d5cd7d679 | schema:isbn | 978-3-540-28114-6 |
74 | ″ | ″ | 978-3-540-31870-5 |
75 | ″ | schema:name | Advances in Cryptology – CRYPTO 2005 |
76 | ″ | rdf:type | schema:Book |
77 | N80f2b757ec3b43408839e09ed7b459f7 | schema:name | Springer Nature |
78 | ″ | rdf:type | schema:Organisation |
79 | N871d5d2ddcb144b1a3e07ef2355b49c4 | rdf:first | Nfa9ff16dadcc4f6da7bff029f9c04f4e |
80 | ″ | rdf:rest | rdf:nil |
81 | N940c8c301eb842c387aabe2076f61978 | rdf:first | sg:person.010203554137.83 |
82 | ″ | rdf:rest | Neaa2a7af00354ee683ff5f83a0096921 |
83 | Nb006c4cf566d4aa7aae76b9f729e6bcf | schema:name | dimensions_id |
84 | ″ | schema:value | pub.1039851897 |
85 | ″ | rdf:type | schema:PropertyValue |
86 | Neaa2a7af00354ee683ff5f83a0096921 | rdf:first | sg:person.01143152610.86 |
87 | ″ | rdf:rest | rdf:nil |
88 | Nfa9ff16dadcc4f6da7bff029f9c04f4e | schema:familyName | Shoup |
89 | ″ | schema:givenName | Victor |
90 | ″ | rdf:type | schema:Person |
91 | Nfaad0267fd2d424593eafb215051335c | schema:name | doi |
92 | ″ | schema:value | 10.1007/11535218_15 |
93 | ″ | rdf:type | schema:PropertyValue |
94 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
95 | ″ | schema:name | Information and Computing Sciences |
96 | ″ | rdf:type | schema:DefinedTerm |
97 | anzsrc-for:0804 | schema:inDefinedTermSet | anzsrc-for: |
98 | ″ | schema:name | Data Format |
99 | ″ | rdf:type | schema:DefinedTerm |
100 | sg:person.010203554137.83 | schema:affiliation | grid-institutes:grid.147455.6 |
101 | ″ | schema:familyName | Kissner |
102 | ″ | schema:givenName | Lea |
103 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010203554137.83 |
104 | ″ | rdf:type | schema:Person |
105 | sg:person.01143152610.86 | schema:affiliation | grid-institutes:grid.147455.6 |
106 | ″ | schema:familyName | Song |
107 | ″ | schema:givenName | Dawn |
108 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143152610.86 |
109 | ″ | rdf:type | schema:Person |
110 | grid-institutes:grid.147455.6 | schema:alternateName | Carnegie Mellon University, 15213, Pittsburgh, PA, USA |
111 | ″ | schema:name | Carnegie Mellon University, 15213, Pittsburgh, PA, USA |
112 | ″ | rdf:type | schema:Organization |