Sequence Detector Networks and Associative Learning of Grammatical Categories View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005

AUTHORS

Andreas Knoblauch , Friedemann Pulvermüller

ABSTRACT

A fundamental prerequisite for language is the ability to distinguish word sequences that are grammatically well-formed from ungrammatical word strings and to generalise rules of syntactic serial order to new strings of constituents. In this work, we extend a neural model of syntactic brain mechanisms that is based on syntactic sequence detectors (SDs). Elementary SDs are neural units that specifically respond to a sequence of constituent words AB, but not (or much less) to the reverse sequence BA. We discuss limitations of the original version of the SD model (Pulvermüller, Theory in Biosciences, 2003) and suggest optimal model variants taking advantage of optimised neuronal response functions, non-linear interaction between inputs, and leaky integration of neuronal input accumulating over time. A biologically more realistic model variant including a network of several SDs is used to demonstrate that associative Hebb-like synaptic plasticity leads to learning of word sequences, formation of neural representations of grammatical categories, and linking of sequence detectors into neuronal assemblies that may provide a biological basis of syntactic rule knowledge. We propose that these syntactic neuronal assemblies (SNAs) underlie generalisation of syntactic regularities from already encountered strings to new grammatical word sequences. More... »

PAGES

31-53

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11521082_3

DOI

http://dx.doi.org/10.1007/11521082_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008173560


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1702", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Abteilung Neuroinformatik, Fakult\u00e4t f\u00fcr Informatik, Universit\u00e4t Ulm, Oberer Eselsberg, D-89069, Ulm, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Cognition and Brain Sciences Unit, MRC, 15 Chaucer Road, CB2 2EF, Cambridge, England", 
            "Abteilung Neuroinformatik, Fakult\u00e4t f\u00fcr Informatik, Universit\u00e4t Ulm, Oberer Eselsberg, D-89069, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knoblauch", 
        "givenName": "Andreas", 
        "id": "sg:person.0640267460.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640267460.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cognition and Brain Sciences Unit, MRC, 15 Chaucer Road, CB2 2EF, Cambridge, England", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Cognition and Brain Sciences Unit, MRC, 15 Chaucer Road, CB2 2EF, Cambridge, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pulverm\u00fcller", 
        "givenName": "Friedemann", 
        "id": "sg:person.01214737170.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214737170.14"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "A fundamental prerequisite for language is the ability to distinguish word sequences that are grammatically well-formed from ungrammatical word strings and to generalise rules of syntactic serial order to new strings of constituents. In this work, we extend a neural model of syntactic brain mechanisms that is based on syntactic sequence detectors (SDs). Elementary SDs are neural units that specifically respond to a sequence of constituent words AB, but not (or much less) to the reverse sequence BA. We discuss limitations of the original version of the SD model (Pulverm\u00fcller, Theory in Biosciences, 2003) and suggest optimal model variants taking advantage of optimised neuronal response functions, non-linear interaction between inputs, and leaky integration of neuronal input accumulating over time. A biologically more realistic model variant including a network of several SDs is used to demonstrate that associative Hebb-like synaptic plasticity leads to learning of word sequences, formation of neural representations of grammatical categories, and linking of sequence detectors into neuronal assemblies that may provide a biological basis of syntactic rule knowledge. We propose that these syntactic neuronal assemblies (SNAs) underlie generalisation of syntactic regularities from already encountered strings to new grammatical word sequences.", 
    "editor": [
      {
        "familyName": "Wermter", 
        "givenName": "Stefan", 
        "type": "Person"
      }, 
      {
        "familyName": "Palm", 
        "givenName": "G\u00fcnther", 
        "type": "Person"
      }, 
      {
        "familyName": "Elshaw", 
        "givenName": "Mark", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11521082_3", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-27440-7", 
        "978-3-540-31896-5"
      ], 
      "name": "Biomimetic Neural Learning for Intelligent Robots", 
      "type": "Book"
    }, 
    "keywords": [
      "word sequences", 
      "grammatical categories", 
      "serial order", 
      "neural representation", 
      "brain mechanisms", 
      "associative learning", 
      "word strings", 
      "syntactic regularities", 
      "rule knowledge", 
      "neuronal response function", 
      "leaky integration", 
      "neural model", 
      "neural units", 
      "sequence BA", 
      "neuronal assemblies", 
      "biological basis", 
      "learning", 
      "new strings", 
      "original version", 
      "model variants", 
      "synaptic plasticity", 
      "fundamental prerequisite", 
      "language", 
      "categories", 
      "representation", 
      "string", 
      "ability", 
      "generalisation", 
      "version", 
      "SD model", 
      "regularity", 
      "plasticity", 
      "non-linear interactions", 
      "knowledge", 
      "input", 
      "network", 
      "model", 
      "detector network", 
      "integration", 
      "interaction", 
      "limitations", 
      "prerequisite", 
      "work", 
      "sequence detector", 
      "basis", 
      "rules", 
      "mechanism", 
      "sequence", 
      "function", 
      "time", 
      "order", 
      "neuronal input", 
      "units", 
      "advantages", 
      "response function", 
      "variants", 
      "Ab", 
      "formation", 
      "detector", 
      "constituents", 
      "Ba", 
      "assembly"
    ], 
    "name": "Sequence Detector Networks and Associative Learning of Grammatical Categories", 
    "pagination": "31-53", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008173560"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11521082_3"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11521082_3", 
      "https://app.dimensions.ai/details/publication/pub.1008173560"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-11-24T21:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/chapter/chapter_294.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/11521082_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11521082_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11521082_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11521082_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11521082_3'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      22 PREDICATES      87 URIs      80 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11521082_3 schema:about anzsrc-for:17
2 anzsrc-for:1702
3 schema:author N8bbfe4a608544bde81effd210c3f0d81
4 schema:datePublished 2005
5 schema:datePublishedReg 2005-01-01
6 schema:description A fundamental prerequisite for language is the ability to distinguish word sequences that are grammatically well-formed from ungrammatical word strings and to generalise rules of syntactic serial order to new strings of constituents. In this work, we extend a neural model of syntactic brain mechanisms that is based on syntactic sequence detectors (SDs). Elementary SDs are neural units that specifically respond to a sequence of constituent words AB, but not (or much less) to the reverse sequence BA. We discuss limitations of the original version of the SD model (Pulvermüller, Theory in Biosciences, 2003) and suggest optimal model variants taking advantage of optimised neuronal response functions, non-linear interaction between inputs, and leaky integration of neuronal input accumulating over time. A biologically more realistic model variant including a network of several SDs is used to demonstrate that associative Hebb-like synaptic plasticity leads to learning of word sequences, formation of neural representations of grammatical categories, and linking of sequence detectors into neuronal assemblies that may provide a biological basis of syntactic rule knowledge. We propose that these syntactic neuronal assemblies (SNAs) underlie generalisation of syntactic regularities from already encountered strings to new grammatical word sequences.
7 schema:editor Ne3e0233690e142e08b48770e13ceaa27
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Naad15459600042cfb0ffde48024450a2
11 schema:keywords Ab
12 Ba
13 SD model
14 ability
15 advantages
16 assembly
17 associative learning
18 basis
19 biological basis
20 brain mechanisms
21 categories
22 constituents
23 detector
24 detector network
25 formation
26 function
27 fundamental prerequisite
28 generalisation
29 grammatical categories
30 input
31 integration
32 interaction
33 knowledge
34 language
35 leaky integration
36 learning
37 limitations
38 mechanism
39 model
40 model variants
41 network
42 neural model
43 neural representation
44 neural units
45 neuronal assemblies
46 neuronal input
47 neuronal response function
48 new strings
49 non-linear interactions
50 order
51 original version
52 plasticity
53 prerequisite
54 regularity
55 representation
56 response function
57 rule knowledge
58 rules
59 sequence
60 sequence BA
61 sequence detector
62 serial order
63 string
64 synaptic plasticity
65 syntactic regularities
66 time
67 units
68 variants
69 version
70 word sequences
71 word strings
72 work
73 schema:name Sequence Detector Networks and Associative Learning of Grammatical Categories
74 schema:pagination 31-53
75 schema:productId N2cf98759140641fab58130be6532cabf
76 N70d662fcb0f14d7cb57e21d3e0fbde8a
77 schema:publisher Nd26153d154d44956af7b2a07be468da3
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008173560
79 https://doi.org/10.1007/11521082_3
80 schema:sdDatePublished 2022-11-24T21:15
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher Nccc4c7d4f67f4375b6b2c24103a04e6e
83 schema:url https://doi.org/10.1007/11521082_3
84 sgo:license sg:explorer/license/
85 sgo:sdDataset chapters
86 rdf:type schema:Chapter
87 N00b8f7385d694a3faf95848797b2de67 schema:familyName Elshaw
88 schema:givenName Mark
89 rdf:type schema:Person
90 N033c78cbf0b2466aaf73ecf20e489708 rdf:first N812ceeb0759d4e0692f5efea8662879d
91 rdf:rest Nddfd7c7e64394d7ea4edb1b690ca6d6f
92 N2cf98759140641fab58130be6532cabf schema:name doi
93 schema:value 10.1007/11521082_3
94 rdf:type schema:PropertyValue
95 N42a199ca723b43bdb67c010d507d011e rdf:first sg:person.01214737170.14
96 rdf:rest rdf:nil
97 N70d662fcb0f14d7cb57e21d3e0fbde8a schema:name dimensions_id
98 schema:value pub.1008173560
99 rdf:type schema:PropertyValue
100 N812ceeb0759d4e0692f5efea8662879d schema:familyName Palm
101 schema:givenName Günther
102 rdf:type schema:Person
103 N8bbfe4a608544bde81effd210c3f0d81 rdf:first sg:person.0640267460.33
104 rdf:rest N42a199ca723b43bdb67c010d507d011e
105 Naad15459600042cfb0ffde48024450a2 schema:isbn 978-3-540-27440-7
106 978-3-540-31896-5
107 schema:name Biomimetic Neural Learning for Intelligent Robots
108 rdf:type schema:Book
109 Nccc4c7d4f67f4375b6b2c24103a04e6e schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 Nd26153d154d44956af7b2a07be468da3 schema:name Springer Nature
112 rdf:type schema:Organisation
113 Nddd3ed127b4e4363a89161391b5ed243 schema:familyName Wermter
114 schema:givenName Stefan
115 rdf:type schema:Person
116 Nddfd7c7e64394d7ea4edb1b690ca6d6f rdf:first N00b8f7385d694a3faf95848797b2de67
117 rdf:rest rdf:nil
118 Ne3e0233690e142e08b48770e13ceaa27 rdf:first Nddd3ed127b4e4363a89161391b5ed243
119 rdf:rest N033c78cbf0b2466aaf73ecf20e489708
120 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
121 schema:name Psychology and Cognitive Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:1702 schema:inDefinedTermSet anzsrc-for:
124 schema:name Cognitive Sciences
125 rdf:type schema:DefinedTerm
126 sg:person.01214737170.14 schema:affiliation grid-institutes:None
127 schema:familyName Pulvermüller
128 schema:givenName Friedemann
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214737170.14
130 rdf:type schema:Person
131 sg:person.0640267460.33 schema:affiliation grid-institutes:grid.6582.9
132 schema:familyName Knoblauch
133 schema:givenName Andreas
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640267460.33
135 rdf:type schema:Person
136 grid-institutes:None schema:alternateName Cognition and Brain Sciences Unit, MRC, 15 Chaucer Road, CB2 2EF, Cambridge, England
137 schema:name Cognition and Brain Sciences Unit, MRC, 15 Chaucer Road, CB2 2EF, Cambridge, England
138 rdf:type schema:Organization
139 grid-institutes:grid.6582.9 schema:alternateName Abteilung Neuroinformatik, Fakultät für Informatik, Universität Ulm, Oberer Eselsberg, D-89069, Ulm, Germany
140 schema:name Abteilung Neuroinformatik, Fakultät für Informatik, Universität Ulm, Oberer Eselsberg, D-89069, Ulm, Germany
141 Cognition and Brain Sciences Unit, MRC, 15 Chaucer Road, CB2 2EF, Cambridge, England
142 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...