MSCC: Maximally Stable Corner Clusters View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2005

AUTHORS

Friedrich Fraundorfer , Martin Winter , Horst Bischof

ABSTRACT

A novel distinguished region detector, complementary to existing approaches like Harris-corner detectors, Difference of Gaussian detectors (DoG) or Maximally Stable Extremal Regions (MSER) is proposed. The basic idea is to find distinguished regions by clusters of interest points. In order to determine the number of clusters we use the concept of maximal stableness across scale. Therefore, the detected regions are called: Maximally Stable Corner Clusters (MSCC). In addition to the detector, we propose a novel joint orientation histogram (JOH) descriptor ideally suited for regions detected by the MSCC detector. The descriptor is based on the 2D joint occurrence histograms of orientations. We perform a comparative detector and descriptor analysis based on the recently proposed framework of Mikolajczyk and Schmid, we present evaluation results on additional non-planar scenes and we evaluate the benefits of combining different detectors. More... »

PAGES

45-54

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11499145_6

DOI

http://dx.doi.org/10.1007/11499145_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000079461


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16/2, A-8010, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16/2, A-8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fraundorfer", 
        "givenName": "Friedrich", 
        "id": "sg:person.016452351373.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016452351373.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16/2, A-8010, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16/2, A-8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Winter", 
        "givenName": "Martin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16/2, A-8010, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16/2, A-8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bischof", 
        "givenName": "Horst", 
        "id": "sg:person.013002347027.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013002347027.27"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "A novel distinguished region detector, complementary to existing approaches like Harris-corner detectors, Difference of Gaussian detectors (DoG) or Maximally Stable Extremal Regions (MSER) is proposed. The basic idea is to find distinguished regions by clusters of interest points. In order to determine the number of clusters we use the concept of maximal stableness across scale. Therefore, the detected regions are called: Maximally Stable Corner Clusters (MSCC). In addition to the detector, we propose a novel joint orientation histogram (JOH) descriptor ideally suited for regions detected by the MSCC detector. The descriptor is based on the 2D joint occurrence histograms of orientations. We perform a comparative detector and descriptor analysis based on the recently proposed framework of Mikolajczyk and Schmid, we present evaluation results on additional non-planar scenes and we evaluate the benefits of combining different detectors.", 
    "editor": [
      {
        "familyName": "Kalviainen", 
        "givenName": "Heikki", 
        "type": "Person"
      }, 
      {
        "familyName": "Parkkinen", 
        "givenName": "Jussi", 
        "type": "Person"
      }, 
      {
        "familyName": "Kaarna", 
        "givenName": "Arto", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11499145_6", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-26320-3", 
        "978-3-540-31566-7"
      ], 
      "name": "Image Analysis", 
      "type": "Book"
    }, 
    "keywords": [
      "differences", 
      "region", 
      "number", 
      "addition", 
      "benefits", 
      "novel", 
      "approach", 
      "clusters", 
      "point", 
      "scale", 
      "histogram", 
      "analysis", 
      "results", 
      "order", 
      "concept", 
      "descriptors", 
      "descriptor analysis", 
      "evaluation results", 
      "detector", 
      "idea", 
      "distinguished regions", 
      "number of clusters", 
      "stableness", 
      "detected regions", 
      "orientation", 
      "framework", 
      "Mikolajczyk", 
      "Schmid", 
      "scene", 
      "different detectors", 
      "Gaussian detector", 
      "Stable Extremal Regions", 
      "Extremal Regions", 
      "basic idea", 
      "interest points", 
      "histogram descriptor", 
      "occurrence histogram", 
      "region detector", 
      "Harris-corner detectors", 
      "maximal stableness", 
      "Stable Corner Clusters", 
      "Corner Clusters", 
      "novel joint orientation histogram (JOH) descriptor", 
      "joint orientation histogram (JOH) descriptor", 
      "orientation histogram (JOH) descriptor", 
      "MSCC detector", 
      "joint occurrence histograms", 
      "comparative detector", 
      "framework of Mikolajczyk", 
      "additional non-planar scenes", 
      "non-planar scenes"
    ], 
    "name": "MSCC: Maximally Stable Corner Clusters", 
    "pagination": "45-54", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000079461"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11499145_6"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11499145_6", 
      "https://app.dimensions.ai/details/publication/pub.1000079461"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_427.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/11499145_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11499145_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11499145_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11499145_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11499145_6'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      23 PREDICATES      77 URIs      70 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11499145_6 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N1fb37c834c374aa79b71e808bd444807
4 schema:datePublished 2005
5 schema:datePublishedReg 2005-01-01
6 schema:description A novel distinguished region detector, complementary to existing approaches like Harris-corner detectors, Difference of Gaussian detectors (DoG) or Maximally Stable Extremal Regions (MSER) is proposed. The basic idea is to find distinguished regions by clusters of interest points. In order to determine the number of clusters we use the concept of maximal stableness across scale. Therefore, the detected regions are called: Maximally Stable Corner Clusters (MSCC). In addition to the detector, we propose a novel joint orientation histogram (JOH) descriptor ideally suited for regions detected by the MSCC detector. The descriptor is based on the 2D joint occurrence histograms of orientations. We perform a comparative detector and descriptor analysis based on the recently proposed framework of Mikolajczyk and Schmid, we present evaluation results on additional non-planar scenes and we evaluate the benefits of combining different detectors.
7 schema:editor N27a65712511547de99992d02b12ac452
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Nd67faebc03e6463384893d8e2d68f473
12 schema:keywords Corner Clusters
13 Extremal Regions
14 Gaussian detector
15 Harris-corner detectors
16 MSCC detector
17 Mikolajczyk
18 Schmid
19 Stable Corner Clusters
20 Stable Extremal Regions
21 addition
22 additional non-planar scenes
23 analysis
24 approach
25 basic idea
26 benefits
27 clusters
28 comparative detector
29 concept
30 descriptor analysis
31 descriptors
32 detected regions
33 detector
34 differences
35 different detectors
36 distinguished regions
37 evaluation results
38 framework
39 framework of Mikolajczyk
40 histogram
41 histogram descriptor
42 idea
43 interest points
44 joint occurrence histograms
45 joint orientation histogram (JOH) descriptor
46 maximal stableness
47 non-planar scenes
48 novel
49 novel joint orientation histogram (JOH) descriptor
50 number
51 number of clusters
52 occurrence histogram
53 order
54 orientation
55 orientation histogram (JOH) descriptor
56 point
57 region
58 region detector
59 results
60 scale
61 scene
62 stableness
63 schema:name MSCC: Maximally Stable Corner Clusters
64 schema:pagination 45-54
65 schema:productId Ne536631c03fd4d53834d3aaff7273867
66 Nea9872ebefb3431fa8a03308ffb4b218
67 schema:publisher N4d2b844fff814737b04cfc70efa3df0a
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000079461
69 https://doi.org/10.1007/11499145_6
70 schema:sdDatePublished 2021-12-01T20:10
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N5351c72d1e0f4d66a373ee17ae7da109
73 schema:url https://doi.org/10.1007/11499145_6
74 sgo:license sg:explorer/license/
75 sgo:sdDataset chapters
76 rdf:type schema:Chapter
77 N1261b7bacbe0459882639fea89310467 rdf:first Nfa4575ee5baf44f3b76e2c9f9f104a11
78 rdf:rest N74f51e0d16904cbca9805cddd48baeaf
79 N1fb37c834c374aa79b71e808bd444807 rdf:first sg:person.016452351373.65
80 rdf:rest Nb204cfd132094e51b6c48ff601e33197
81 N27a65712511547de99992d02b12ac452 rdf:first Ncd76347e451b415ba3822b0936e8c995
82 rdf:rest N1261b7bacbe0459882639fea89310467
83 N4d2b844fff814737b04cfc70efa3df0a schema:name Springer Nature
84 rdf:type schema:Organisation
85 N4ea9d83a21ec4dc684cef79041287ac4 schema:affiliation grid-institutes:grid.410413.3
86 schema:familyName Winter
87 schema:givenName Martin
88 rdf:type schema:Person
89 N5351c72d1e0f4d66a373ee17ae7da109 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N74f51e0d16904cbca9805cddd48baeaf rdf:first N8e6980f8d7aa430ba6600726fe354de0
92 rdf:rest rdf:nil
93 N8e6980f8d7aa430ba6600726fe354de0 schema:familyName Kaarna
94 schema:givenName Arto
95 rdf:type schema:Person
96 Nb204cfd132094e51b6c48ff601e33197 rdf:first N4ea9d83a21ec4dc684cef79041287ac4
97 rdf:rest Nc4601a7a3f174c35a6d2bc743d2ea15e
98 Nc4601a7a3f174c35a6d2bc743d2ea15e rdf:first sg:person.013002347027.27
99 rdf:rest rdf:nil
100 Ncd76347e451b415ba3822b0936e8c995 schema:familyName Kalviainen
101 schema:givenName Heikki
102 rdf:type schema:Person
103 Nd67faebc03e6463384893d8e2d68f473 schema:isbn 978-3-540-26320-3
104 978-3-540-31566-7
105 schema:name Image Analysis
106 rdf:type schema:Book
107 Ne536631c03fd4d53834d3aaff7273867 schema:name doi
108 schema:value 10.1007/11499145_6
109 rdf:type schema:PropertyValue
110 Nea9872ebefb3431fa8a03308ffb4b218 schema:name dimensions_id
111 schema:value pub.1000079461
112 rdf:type schema:PropertyValue
113 Nfa4575ee5baf44f3b76e2c9f9f104a11 schema:familyName Parkkinen
114 schema:givenName Jussi
115 rdf:type schema:Person
116 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
117 schema:name Medical and Health Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
120 schema:name Clinical Sciences
121 rdf:type schema:DefinedTerm
122 sg:person.013002347027.27 schema:affiliation grid-institutes:grid.410413.3
123 schema:familyName Bischof
124 schema:givenName Horst
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013002347027.27
126 rdf:type schema:Person
127 sg:person.016452351373.65 schema:affiliation grid-institutes:grid.410413.3
128 schema:familyName Fraundorfer
129 schema:givenName Friedrich
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016452351373.65
131 rdf:type schema:Person
132 grid-institutes:grid.410413.3 schema:alternateName Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16/2, A-8010, Graz, Austria
133 schema:name Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16/2, A-8010, Graz, Austria
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...