ACE: Adaptive Classifiers-Ensemble System for Concept-Drifting Environments View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005

AUTHORS

Kyosuke Nishida , Koichiro Yamauchi , Takashi Omori

ABSTRACT

Most machine learning algorithms assume stationary environments, require a large number of training examples in advance, and begin the learning from scratch. In contrast, humans learn in changing environments with sequential training examples and leverage prior knowledge in new situations. To deal with real-world problems in changing environments, the ability to make human-like quick responses must be developed in machines.Many researchers have presented learning systems that assume the presence of hidden context and concept drift. In particular, several systems have been proposed that use ensembles of classifiers on sequential chunks of training examples. These systems can respond to gradual changes in large-scale data streams but have problems responding to sudden changes and leveraging prior knowledge of recurring contexts. Moreover, these are not pure online learning systems.We propose an online learning system that uses an ensemble of classifiers suited to recent training examples. We use experiments to show that this system can leverage prior knowledge of recurring contexts and is robust against various noise levels and types of drift. More... »

PAGES

176-185

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11494683_18

DOI

http://dx.doi.org/10.1007/11494683_18

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016442646


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9, Kita, 060-0814, Sapporo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.39158.36", 
          "name": [
            "Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9, Kita, 060-0814, Sapporo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nishida", 
        "givenName": "Kyosuke", 
        "id": "sg:person.011031550477.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011031550477.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9, Kita, 060-0814, Sapporo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.39158.36", 
          "name": [
            "Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9, Kita, 060-0814, Sapporo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamauchi", 
        "givenName": "Koichiro", 
        "id": "sg:person.07364502315.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07364502315.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9, Kita, 060-0814, Sapporo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.39158.36", 
          "name": [
            "Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9, Kita, 060-0814, Sapporo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Omori", 
        "givenName": "Takashi", 
        "id": "sg:person.01263557346.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263557346.07"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "Most machine learning algorithms assume stationary environments, require a large number of training examples in advance, and begin the learning from scratch. In contrast, humans learn in changing environments with sequential training examples and leverage prior knowledge in new situations. To deal with real-world problems in changing environments, the ability to make human-like quick responses must be developed in machines.Many researchers have presented learning systems that assume the presence of hidden context and concept drift. In particular, several systems have been proposed that use ensembles of classifiers on sequential chunks of training examples. These systems can respond to gradual changes in large-scale data streams but have problems responding to sudden changes and leveraging prior knowledge of recurring contexts. Moreover, these are not pure online learning systems.We propose an online learning system that uses an ensemble of classifiers suited to recent training examples. We use experiments to show that this system can leverage prior knowledge of recurring contexts and is robust against various noise levels and types of drift.", 
    "editor": [
      {
        "familyName": "Oza", 
        "givenName": "Nikunj C.", 
        "type": "Person"
      }, 
      {
        "familyName": "Polikar", 
        "givenName": "Robi", 
        "type": "Person"
      }, 
      {
        "familyName": "Kittler", 
        "givenName": "Josef", 
        "type": "Person"
      }, 
      {
        "familyName": "Roli", 
        "givenName": "Fabio", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11494683_18", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-26306-7", 
        "978-3-540-31578-0"
      ], 
      "name": "Multiple Classifier Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "training examples", 
      "online learning system", 
      "learning system", 
      "large-scale data streams", 
      "concept-drifting environment", 
      "prior knowledge", 
      "real-world problems", 
      "leverage prior knowledge", 
      "ensemble of classifiers", 
      "concept drift", 
      "data streams", 
      "sequential chunks", 
      "types of drift", 
      "most machine", 
      "hidden context", 
      "stationary environment", 
      "classifier", 
      "machine", 
      "quick response", 
      "environment", 
      "new situation", 
      "large number", 
      "system", 
      "algorithm", 
      "chunks", 
      "noise level", 
      "example", 
      "scratch", 
      "learning", 
      "ensemble", 
      "knowledge", 
      "context", 
      "streams", 
      "sudden change", 
      "researchers", 
      "situation", 
      "experiments", 
      "advances", 
      "drift", 
      "number", 
      "ability", 
      "humans", 
      "types", 
      "gradual change", 
      "levels", 
      "changes", 
      "contrast", 
      "problem", 
      "presence", 
      "response", 
      "sequential training examples", 
      "human-like quick responses", 
      "use ensembles", 
      "pure online learning systems", 
      "recent training examples", 
      "Adaptive Classifiers-Ensemble System", 
      "Classifiers-Ensemble System"
    ], 
    "name": "ACE: Adaptive Classifiers-Ensemble System for Concept-Drifting Environments", 
    "pagination": "176-185", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016442646"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11494683_18"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11494683_18", 
      "https://app.dimensions.ai/details/publication/pub.1016442646"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_176.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/11494683_18"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11494683_18'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11494683_18'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11494683_18'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11494683_18'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      23 PREDICATES      83 URIs      76 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11494683_18 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N5f827e4d7f5b495791d0d24cb26e6b30
4 schema:datePublished 2005
5 schema:datePublishedReg 2005-01-01
6 schema:description Most machine learning algorithms assume stationary environments, require a large number of training examples in advance, and begin the learning from scratch. In contrast, humans learn in changing environments with sequential training examples and leverage prior knowledge in new situations. To deal with real-world problems in changing environments, the ability to make human-like quick responses must be developed in machines.Many researchers have presented learning systems that assume the presence of hidden context and concept drift. In particular, several systems have been proposed that use ensembles of classifiers on sequential chunks of training examples. These systems can respond to gradual changes in large-scale data streams but have problems responding to sudden changes and leveraging prior knowledge of recurring contexts. Moreover, these are not pure online learning systems.We propose an online learning system that uses an ensemble of classifiers suited to recent training examples. We use experiments to show that this system can leverage prior knowledge of recurring contexts and is robust against various noise levels and types of drift.
7 schema:editor N35760263c0c64563b2da368bfdd27f29
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N38b68be35c0f40768048caa2300e937b
12 schema:keywords Adaptive Classifiers-Ensemble System
13 Classifiers-Ensemble System
14 ability
15 advances
16 algorithm
17 changes
18 chunks
19 classifier
20 concept drift
21 concept-drifting environment
22 context
23 contrast
24 data streams
25 drift
26 ensemble
27 ensemble of classifiers
28 environment
29 example
30 experiments
31 gradual change
32 hidden context
33 human-like quick responses
34 humans
35 knowledge
36 large number
37 large-scale data streams
38 learning
39 learning system
40 levels
41 leverage prior knowledge
42 machine
43 most machine
44 new situation
45 noise level
46 number
47 online learning system
48 presence
49 prior knowledge
50 problem
51 pure online learning systems
52 quick response
53 real-world problems
54 recent training examples
55 researchers
56 response
57 scratch
58 sequential chunks
59 sequential training examples
60 situation
61 stationary environment
62 streams
63 sudden change
64 system
65 training examples
66 types
67 types of drift
68 use ensembles
69 schema:name ACE: Adaptive Classifiers-Ensemble System for Concept-Drifting Environments
70 schema:pagination 176-185
71 schema:productId N123b8eb964b4493a92bd55f294be9153
72 Nca7eceea132843b299605d4217be0a40
73 schema:publisher N850825e924744528872d367267e47e50
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016442646
75 https://doi.org/10.1007/11494683_18
76 schema:sdDatePublished 2022-01-01T19:10
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N54eafc042f8e42f1b97a92fc986b6298
79 schema:url https://doi.org/10.1007/11494683_18
80 sgo:license sg:explorer/license/
81 sgo:sdDataset chapters
82 rdf:type schema:Chapter
83 N10574ad10f9847d2b496e4baf385d4d4 rdf:first sg:person.07364502315.92
84 rdf:rest N4cc679f387b04da79510b7c880889bae
85 N123b8eb964b4493a92bd55f294be9153 schema:name doi
86 schema:value 10.1007/11494683_18
87 rdf:type schema:PropertyValue
88 N192ebdc3ea014166a04d616137d66540 rdf:first Nf493726cca8b4a75873b6b6b2ba65f54
89 rdf:rest Nfec7658671444d8081def1e45b05e564
90 N35760263c0c64563b2da368bfdd27f29 rdf:first Nbec60ce7e72a44b7b85ca7bf4065008a
91 rdf:rest N8f73789f46da485e97739605fdd169bb
92 N38b68be35c0f40768048caa2300e937b schema:isbn 978-3-540-26306-7
93 978-3-540-31578-0
94 schema:name Multiple Classifier Systems
95 rdf:type schema:Book
96 N3f001e340a0d4ab8aa8c52a42190c87e schema:familyName Polikar
97 schema:givenName Robi
98 rdf:type schema:Person
99 N4cc679f387b04da79510b7c880889bae rdf:first sg:person.01263557346.07
100 rdf:rest rdf:nil
101 N54eafc042f8e42f1b97a92fc986b6298 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 N5f827e4d7f5b495791d0d24cb26e6b30 rdf:first sg:person.011031550477.82
104 rdf:rest N10574ad10f9847d2b496e4baf385d4d4
105 N850825e924744528872d367267e47e50 schema:name Springer Nature
106 rdf:type schema:Organisation
107 N8f73789f46da485e97739605fdd169bb rdf:first N3f001e340a0d4ab8aa8c52a42190c87e
108 rdf:rest N192ebdc3ea014166a04d616137d66540
109 Na66ffb0da6f34beb860d9cae4b8b61a9 schema:familyName Roli
110 schema:givenName Fabio
111 rdf:type schema:Person
112 Nbec60ce7e72a44b7b85ca7bf4065008a schema:familyName Oza
113 schema:givenName Nikunj C.
114 rdf:type schema:Person
115 Nca7eceea132843b299605d4217be0a40 schema:name dimensions_id
116 schema:value pub.1016442646
117 rdf:type schema:PropertyValue
118 Nf493726cca8b4a75873b6b6b2ba65f54 schema:familyName Kittler
119 schema:givenName Josef
120 rdf:type schema:Person
121 Nfec7658671444d8081def1e45b05e564 rdf:first Na66ffb0da6f34beb860d9cae4b8b61a9
122 rdf:rest rdf:nil
123 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
124 schema:name Information and Computing Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
127 schema:name Artificial Intelligence and Image Processing
128 rdf:type schema:DefinedTerm
129 sg:person.011031550477.82 schema:affiliation grid-institutes:grid.39158.36
130 schema:familyName Nishida
131 schema:givenName Kyosuke
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011031550477.82
133 rdf:type schema:Person
134 sg:person.01263557346.07 schema:affiliation grid-institutes:grid.39158.36
135 schema:familyName Omori
136 schema:givenName Takashi
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263557346.07
138 rdf:type schema:Person
139 sg:person.07364502315.92 schema:affiliation grid-institutes:grid.39158.36
140 schema:familyName Yamauchi
141 schema:givenName Koichiro
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07364502315.92
143 rdf:type schema:Person
144 grid-institutes:grid.39158.36 schema:alternateName Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9, Kita, 060-0814, Sapporo, Japan
145 schema:name Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9, Kita, 060-0814, Sapporo, Japan
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...