Ontology type: schema:Chapter
2005
AUTHORSKyosuke Nishida , Koichiro Yamauchi , Takashi Omori
ABSTRACTMost machine learning algorithms assume stationary environments, require a large number of training examples in advance, and begin the learning from scratch. In contrast, humans learn in changing environments with sequential training examples and leverage prior knowledge in new situations. To deal with real-world problems in changing environments, the ability to make human-like quick responses must be developed in machines.Many researchers have presented learning systems that assume the presence of hidden context and concept drift. In particular, several systems have been proposed that use ensembles of classifiers on sequential chunks of training examples. These systems can respond to gradual changes in large-scale data streams but have problems responding to sudden changes and leveraging prior knowledge of recurring contexts. Moreover, these are not pure online learning systems.We propose an online learning system that uses an ensemble of classifiers suited to recent training examples. We use experiments to show that this system can leverage prior knowledge of recurring contexts and is robust against various noise levels and types of drift. More... »
PAGES176-185
Multiple Classifier Systems
ISBN
978-3-540-26306-7
978-3-540-31578-0
http://scigraph.springernature.com/pub.10.1007/11494683_18
DOIhttp://dx.doi.org/10.1007/11494683_18
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1016442646
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9, Kita, 060-0814, Sapporo, Japan",
"id": "http://www.grid.ac/institutes/grid.39158.36",
"name": [
"Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9, Kita, 060-0814, Sapporo, Japan"
],
"type": "Organization"
},
"familyName": "Nishida",
"givenName": "Kyosuke",
"id": "sg:person.011031550477.82",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011031550477.82"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9, Kita, 060-0814, Sapporo, Japan",
"id": "http://www.grid.ac/institutes/grid.39158.36",
"name": [
"Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9, Kita, 060-0814, Sapporo, Japan"
],
"type": "Organization"
},
"familyName": "Yamauchi",
"givenName": "Koichiro",
"id": "sg:person.07364502315.92",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07364502315.92"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9, Kita, 060-0814, Sapporo, Japan",
"id": "http://www.grid.ac/institutes/grid.39158.36",
"name": [
"Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9, Kita, 060-0814, Sapporo, Japan"
],
"type": "Organization"
},
"familyName": "Omori",
"givenName": "Takashi",
"id": "sg:person.01263557346.07",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263557346.07"
],
"type": "Person"
}
],
"datePublished": "2005",
"datePublishedReg": "2005-01-01",
"description": "Most machine learning algorithms assume stationary environments, require a large number of training examples in advance, and begin the learning from scratch. In contrast, humans learn in changing environments with sequential training examples and leverage prior knowledge in new situations. To deal with real-world problems in changing environments, the ability to make human-like quick responses must be developed in machines.Many researchers have presented learning systems that assume the presence of hidden context and concept drift. In particular, several systems have been proposed that use ensembles of classifiers on sequential chunks of training examples. These systems can respond to gradual changes in large-scale data streams but have problems responding to sudden changes and leveraging prior knowledge of recurring contexts. Moreover, these are not pure online learning systems.We propose an online learning system that uses an ensemble of classifiers suited to recent training examples. We use experiments to show that this system can leverage prior knowledge of recurring contexts and is robust against various noise levels and types of drift.",
"editor": [
{
"familyName": "Oza",
"givenName": "Nikunj C.",
"type": "Person"
},
{
"familyName": "Polikar",
"givenName": "Robi",
"type": "Person"
},
{
"familyName": "Kittler",
"givenName": "Josef",
"type": "Person"
},
{
"familyName": "Roli",
"givenName": "Fabio",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/11494683_18",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-540-26306-7",
"978-3-540-31578-0"
],
"name": "Multiple Classifier Systems",
"type": "Book"
},
"keywords": [
"training examples",
"online learning system",
"learning system",
"large-scale data streams",
"prior knowledge",
"concept-drifting environment",
"leverage prior knowledge",
"ensemble of classifiers",
"classifier ensemble system",
"real-world problems",
"concept drift",
"sequential chunks",
"data streams",
"types of drift",
"most machine",
"hidden context",
"stationary environment",
"classifier",
"machine",
"quick response",
"new situation",
"environment",
"large number",
"system",
"chunks",
"algorithm",
"learning",
"scratch",
"example",
"ensemble",
"knowledge",
"context",
"noise level",
"streams",
"researchers",
"sudden change",
"situation",
"advances",
"experiments",
"number",
"drift",
"ability",
"humans",
"types",
"gradual change",
"levels",
"changes",
"contrast",
"presence",
"response",
"problem"
],
"name": "ACE: Adaptive Classifiers-Ensemble System for Concept-Drifting Environments",
"pagination": "176-185",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1016442646"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/11494683_18"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/11494683_18",
"https://app.dimensions.ai/details/publication/pub.1016442646"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:44",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_236.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/11494683_18"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11494683_18'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11494683_18'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11494683_18'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11494683_18'
This table displays all metadata directly associated to this object as RDF triples.
140 TRIPLES
23 PREDICATES
77 URIs
70 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/11494683_18 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | schema:author | Nd53d10f2a1fa48c189c547c17eba4cfe |
4 | ″ | schema:datePublished | 2005 |
5 | ″ | schema:datePublishedReg | 2005-01-01 |
6 | ″ | schema:description | Most machine learning algorithms assume stationary environments, require a large number of training examples in advance, and begin the learning from scratch. In contrast, humans learn in changing environments with sequential training examples and leverage prior knowledge in new situations. To deal with real-world problems in changing environments, the ability to make human-like quick responses must be developed in machines.Many researchers have presented learning systems that assume the presence of hidden context and concept drift. In particular, several systems have been proposed that use ensembles of classifiers on sequential chunks of training examples. These systems can respond to gradual changes in large-scale data streams but have problems responding to sudden changes and leveraging prior knowledge of recurring contexts. Moreover, these are not pure online learning systems.We propose an online learning system that uses an ensemble of classifiers suited to recent training examples. We use experiments to show that this system can leverage prior knowledge of recurring contexts and is robust against various noise levels and types of drift. |
7 | ″ | schema:editor | N93dfb71cde5548289597509c0164aba9 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | Nd82eb6cefc52451ea2290213324b7459 |
12 | ″ | schema:keywords | ability |
13 | ″ | ″ | advances |
14 | ″ | ″ | algorithm |
15 | ″ | ″ | changes |
16 | ″ | ″ | chunks |
17 | ″ | ″ | classifier |
18 | ″ | ″ | classifier ensemble system |
19 | ″ | ″ | concept drift |
20 | ″ | ″ | concept-drifting environment |
21 | ″ | ″ | context |
22 | ″ | ″ | contrast |
23 | ″ | ″ | data streams |
24 | ″ | ″ | drift |
25 | ″ | ″ | ensemble |
26 | ″ | ″ | ensemble of classifiers |
27 | ″ | ″ | environment |
28 | ″ | ″ | example |
29 | ″ | ″ | experiments |
30 | ″ | ″ | gradual change |
31 | ″ | ″ | hidden context |
32 | ″ | ″ | humans |
33 | ″ | ″ | knowledge |
34 | ″ | ″ | large number |
35 | ″ | ″ | large-scale data streams |
36 | ″ | ″ | learning |
37 | ″ | ″ | learning system |
38 | ″ | ″ | levels |
39 | ″ | ″ | leverage prior knowledge |
40 | ″ | ″ | machine |
41 | ″ | ″ | most machine |
42 | ″ | ″ | new situation |
43 | ″ | ″ | noise level |
44 | ″ | ″ | number |
45 | ″ | ″ | online learning system |
46 | ″ | ″ | presence |
47 | ″ | ″ | prior knowledge |
48 | ″ | ″ | problem |
49 | ″ | ″ | quick response |
50 | ″ | ″ | real-world problems |
51 | ″ | ″ | researchers |
52 | ″ | ″ | response |
53 | ″ | ″ | scratch |
54 | ″ | ″ | sequential chunks |
55 | ″ | ″ | situation |
56 | ″ | ″ | stationary environment |
57 | ″ | ″ | streams |
58 | ″ | ″ | sudden change |
59 | ″ | ″ | system |
60 | ″ | ″ | training examples |
61 | ″ | ″ | types |
62 | ″ | ″ | types of drift |
63 | ″ | schema:name | ACE: Adaptive Classifiers-Ensemble System for Concept-Drifting Environments |
64 | ″ | schema:pagination | 176-185 |
65 | ″ | schema:productId | N544aa1844a304581b0b6f2d48c916670 |
66 | ″ | ″ | Nf59ca4c0568842ab91a91b76b6b8a69a |
67 | ″ | schema:publisher | Nd4b0a7176aba4100a653e9ce009105a9 |
68 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1016442646 |
69 | ″ | ″ | https://doi.org/10.1007/11494683_18 |
70 | ″ | schema:sdDatePublished | 2022-05-20T07:44 |
71 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
72 | ″ | schema:sdPublisher | N006b9f96b0264817872c7a5b7fd9f5c5 |
73 | ″ | schema:url | https://doi.org/10.1007/11494683_18 |
74 | ″ | sgo:license | sg:explorer/license/ |
75 | ″ | sgo:sdDataset | chapters |
76 | ″ | rdf:type | schema:Chapter |
77 | N006b9f96b0264817872c7a5b7fd9f5c5 | schema:name | Springer Nature - SN SciGraph project |
78 | ″ | rdf:type | schema:Organization |
79 | N26b28665bc2240dd9812a9ae1a157151 | rdf:first | sg:person.07364502315.92 |
80 | ″ | rdf:rest | Ncea183fd19354041971620caa80e8951 |
81 | N544aa1844a304581b0b6f2d48c916670 | schema:name | dimensions_id |
82 | ″ | schema:value | pub.1016442646 |
83 | ″ | rdf:type | schema:PropertyValue |
84 | N5b9469b80d4a4296a48c341df6685d08 | rdf:first | Ncd1a96083ab44273929a0c35d1a257c0 |
85 | ″ | rdf:rest | Ncb8a0b15583a46f8a9d4b2e067b3130e |
86 | N80c4f8eb669c4eea880a7ce30761d7f9 | schema:familyName | Roli |
87 | ″ | schema:givenName | Fabio |
88 | ″ | rdf:type | schema:Person |
89 | N93dfb71cde5548289597509c0164aba9 | rdf:first | Nb20ca829c49d4a049c9507bedbec0dae |
90 | ″ | rdf:rest | Nd8937e78dd2549de938bb8a32ef07d34 |
91 | Na321a948a66f4ecc8777d5ca7687721c | schema:familyName | Polikar |
92 | ″ | schema:givenName | Robi |
93 | ″ | rdf:type | schema:Person |
94 | Nb20ca829c49d4a049c9507bedbec0dae | schema:familyName | Oza |
95 | ″ | schema:givenName | Nikunj C. |
96 | ″ | rdf:type | schema:Person |
97 | Ncb8a0b15583a46f8a9d4b2e067b3130e | rdf:first | N80c4f8eb669c4eea880a7ce30761d7f9 |
98 | ″ | rdf:rest | rdf:nil |
99 | Ncd1a96083ab44273929a0c35d1a257c0 | schema:familyName | Kittler |
100 | ″ | schema:givenName | Josef |
101 | ″ | rdf:type | schema:Person |
102 | Ncea183fd19354041971620caa80e8951 | rdf:first | sg:person.01263557346.07 |
103 | ″ | rdf:rest | rdf:nil |
104 | Nd4b0a7176aba4100a653e9ce009105a9 | schema:name | Springer Nature |
105 | ″ | rdf:type | schema:Organisation |
106 | Nd53d10f2a1fa48c189c547c17eba4cfe | rdf:first | sg:person.011031550477.82 |
107 | ″ | rdf:rest | N26b28665bc2240dd9812a9ae1a157151 |
108 | Nd82eb6cefc52451ea2290213324b7459 | schema:isbn | 978-3-540-26306-7 |
109 | ″ | ″ | 978-3-540-31578-0 |
110 | ″ | schema:name | Multiple Classifier Systems |
111 | ″ | rdf:type | schema:Book |
112 | Nd8937e78dd2549de938bb8a32ef07d34 | rdf:first | Na321a948a66f4ecc8777d5ca7687721c |
113 | ″ | rdf:rest | N5b9469b80d4a4296a48c341df6685d08 |
114 | Nf59ca4c0568842ab91a91b76b6b8a69a | schema:name | doi |
115 | ″ | schema:value | 10.1007/11494683_18 |
116 | ″ | rdf:type | schema:PropertyValue |
117 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
118 | ″ | schema:name | Information and Computing Sciences |
119 | ″ | rdf:type | schema:DefinedTerm |
120 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
121 | ″ | schema:name | Artificial Intelligence and Image Processing |
122 | ″ | rdf:type | schema:DefinedTerm |
123 | sg:person.011031550477.82 | schema:affiliation | grid-institutes:grid.39158.36 |
124 | ″ | schema:familyName | Nishida |
125 | ″ | schema:givenName | Kyosuke |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011031550477.82 |
127 | ″ | rdf:type | schema:Person |
128 | sg:person.01263557346.07 | schema:affiliation | grid-institutes:grid.39158.36 |
129 | ″ | schema:familyName | Omori |
130 | ″ | schema:givenName | Takashi |
131 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263557346.07 |
132 | ″ | rdf:type | schema:Person |
133 | sg:person.07364502315.92 | schema:affiliation | grid-institutes:grid.39158.36 |
134 | ″ | schema:familyName | Yamauchi |
135 | ″ | schema:givenName | Koichiro |
136 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07364502315.92 |
137 | ″ | rdf:type | schema:Person |
138 | grid-institutes:grid.39158.36 | schema:alternateName | Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9, Kita, 060-0814, Sapporo, Japan |
139 | ″ | schema:name | Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9, Kita, 060-0814, Sapporo, Japan |
140 | ″ | rdf:type | schema:Organization |