Efficient Multimodality Volume Fusion Using Graphics Hardware View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2005

AUTHORS

Helen Hong , Juhee Bae , Heewon Kye , Yeong Gil Shin

ABSTRACT

We propose a novel technique of multimodality volume fusion using graphics hardware that solves the depth cueing problem with less time consumption. Our method consists of three steps. First, it takes two volumes and generates sample planes orthogonal to the viewing direction following 3D texture mapping volume rendering. Second, it composites textured slices each from different modalities with several compositing operations. Third, alpha blending for all the slices is performed. For the efficient volume fusion, a pixel program is written in HLSL(High Level Shader Language). Experimental results show that our hardware-accelerated method distinguishes the depth of overlapping region of the volume and renders them much faster than conventional ones on software. More... »

PAGES

842-845

Book

TITLE

Computational Science – ICCS 2005

ISBN

978-3-540-26044-8
978-3-540-32118-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11428862_120

DOI

http://dx.doi.org/10.1007/11428862_120

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038726854


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Computer Science and Engineering, BK21: Information Technology, Seoul National University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hong", 
        "givenName": "Helen", 
        "id": "sg:person.01066641322.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066641322.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Computer Science and Engineering, Seoul National University, San 56-1 Shinlim 9-dong, Kwanak-gu, 151-742, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bae", 
        "givenName": "Juhee", 
        "id": "sg:person.016461706727.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016461706727.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Computer Science and Engineering, Seoul National University, San 56-1 Shinlim 9-dong, Kwanak-gu, 151-742, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kye", 
        "givenName": "Heewon", 
        "id": "sg:person.015100172437.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015100172437.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Computer Science and Engineering, Seoul National University, San 56-1 Shinlim 9-dong, Kwanak-gu, 151-742, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shin", 
        "givenName": "Yeong Gil", 
        "id": "sg:person.01224015576.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224015576.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/1467-8659.00356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013176801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/197938.197966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030428733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.479857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032436035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4233.594025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061171185"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "We propose a novel technique of multimodality volume fusion using graphics hardware that solves the depth cueing problem with less time consumption. Our method consists of three steps. First, it takes two volumes and generates sample planes orthogonal to the viewing direction following 3D texture mapping volume rendering. Second, it composites textured slices each from different modalities with several compositing operations. Third, alpha blending for all the slices is performed. For the efficient volume fusion, a pixel program is written in HLSL(High Level Shader Language). Experimental results show that our hardware-accelerated method distinguishes the depth of overlapping region of the volume and renders them much faster than conventional ones on software.", 
    "editor": [
      {
        "familyName": "Sunderam", 
        "givenName": "Vaidy S.", 
        "type": "Person"
      }, 
      {
        "familyName": "van Albada", 
        "givenName": "Geert Dick", 
        "type": "Person"
      }, 
      {
        "familyName": "Sloot", 
        "givenName": "Peter M. A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Dongarra", 
        "givenName": "Jack", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11428862_120", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-26044-8", 
        "978-3-540-32118-7"
      ], 
      "name": "Computational Science \u2013 ICCS 2005", 
      "type": "Book"
    }, 
    "name": "Efficient Multimodality Volume Fusion Using Graphics Hardware", 
    "pagination": "842-845", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038726854"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11428862_120"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b87a5edd9782f2a9099d143ec0b1a16eb575da2b1a1abf3018cacdb26b96c136"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11428862_120", 
      "https://app.dimensions.ai/details/publication/pub.1038726854"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000357_0000000357/records_99328_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F11428862_120"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11428862_120'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11428862_120'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11428862_120'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11428862_120'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11428862_120 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf3c5451f507d44348e0f3b59c9d89ec0
4 schema:citation https://doi.org/10.1109/4233.594025
5 https://doi.org/10.1111/1467-8659.00356
6 https://doi.org/10.1117/12.479857
7 https://doi.org/10.1145/197938.197966
8 schema:datePublished 2005
9 schema:datePublishedReg 2005-01-01
10 schema:description We propose a novel technique of multimodality volume fusion using graphics hardware that solves the depth cueing problem with less time consumption. Our method consists of three steps. First, it takes two volumes and generates sample planes orthogonal to the viewing direction following 3D texture mapping volume rendering. Second, it composites textured slices each from different modalities with several compositing operations. Third, alpha blending for all the slices is performed. For the efficient volume fusion, a pixel program is written in HLSL(High Level Shader Language). Experimental results show that our hardware-accelerated method distinguishes the depth of overlapping region of the volume and renders them much faster than conventional ones on software.
11 schema:editor N26ec20c8cf1f4d2b9811267bab01aa1d
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N51a888cbdbff450e9765d3602520fc33
16 schema:name Efficient Multimodality Volume Fusion Using Graphics Hardware
17 schema:pagination 842-845
18 schema:productId N2b9baae4cd7543fe9ba9be746d75551f
19 N8329507c6c9f4e14bda39cf79ba47ec2
20 Nc0ea5273f9ce4cd5af06033f202e3da1
21 schema:publisher Nda6722205fd94f8e9cf2a7fdb52aa071
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038726854
23 https://doi.org/10.1007/11428862_120
24 schema:sdDatePublished 2019-04-16T07:38
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N0a70b7ca298843d6aac1e0367d8bf972
27 schema:url https://link.springer.com/10.1007%2F11428862_120
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N0a70b7ca298843d6aac1e0367d8bf972 schema:name Springer Nature - SN SciGraph project
32 rdf:type schema:Organization
33 N14ef1a15e9d04442a0501594f248b528 schema:familyName Sunderam
34 schema:givenName Vaidy S.
35 rdf:type schema:Person
36 N2582820369d6498ebeb83f3ecf407263 rdf:first sg:person.016461706727.53
37 rdf:rest N68a3510daabb471f984530d6b6410292
38 N26ec20c8cf1f4d2b9811267bab01aa1d rdf:first N14ef1a15e9d04442a0501594f248b528
39 rdf:rest N42e8c426df0f40b5a66002b4edc94f92
40 N290fac6e577742e7adcd0e3b67fce728 rdf:first Nac9446cb744e40d897937472f4548faa
41 rdf:rest rdf:nil
42 N2b9baae4cd7543fe9ba9be746d75551f schema:name readcube_id
43 schema:value b87a5edd9782f2a9099d143ec0b1a16eb575da2b1a1abf3018cacdb26b96c136
44 rdf:type schema:PropertyValue
45 N42e8c426df0f40b5a66002b4edc94f92 rdf:first N7177035eacb94374ae57af6a9df499d2
46 rdf:rest N6588d0176ec746a2aa4e772cecd84903
47 N51a888cbdbff450e9765d3602520fc33 schema:isbn 978-3-540-26044-8
48 978-3-540-32118-7
49 schema:name Computational Science – ICCS 2005
50 rdf:type schema:Book
51 N6588d0176ec746a2aa4e772cecd84903 rdf:first N9f8030e40dae4b2996b88e75d20b5c14
52 rdf:rest N290fac6e577742e7adcd0e3b67fce728
53 N68a3510daabb471f984530d6b6410292 rdf:first sg:person.015100172437.15
54 rdf:rest Ne9dad212b8804faf9baf9c8e21d11eec
55 N7177035eacb94374ae57af6a9df499d2 schema:familyName van Albada
56 schema:givenName Geert Dick
57 rdf:type schema:Person
58 N8329507c6c9f4e14bda39cf79ba47ec2 schema:name doi
59 schema:value 10.1007/11428862_120
60 rdf:type schema:PropertyValue
61 N9f8030e40dae4b2996b88e75d20b5c14 schema:familyName Sloot
62 schema:givenName Peter M. A.
63 rdf:type schema:Person
64 Nac9446cb744e40d897937472f4548faa schema:familyName Dongarra
65 schema:givenName Jack
66 rdf:type schema:Person
67 Nc0ea5273f9ce4cd5af06033f202e3da1 schema:name dimensions_id
68 schema:value pub.1038726854
69 rdf:type schema:PropertyValue
70 Nda6722205fd94f8e9cf2a7fdb52aa071 schema:location Berlin, Heidelberg
71 schema:name Springer Berlin Heidelberg
72 rdf:type schema:Organisation
73 Ne9dad212b8804faf9baf9c8e21d11eec rdf:first sg:person.01224015576.81
74 rdf:rest rdf:nil
75 Nf3c5451f507d44348e0f3b59c9d89ec0 rdf:first sg:person.01066641322.21
76 rdf:rest N2582820369d6498ebeb83f3ecf407263
77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
78 schema:name Information and Computing Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
81 schema:name Artificial Intelligence and Image Processing
82 rdf:type schema:DefinedTerm
83 sg:person.01066641322.21 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
84 schema:familyName Hong
85 schema:givenName Helen
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066641322.21
87 rdf:type schema:Person
88 sg:person.01224015576.81 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
89 schema:familyName Shin
90 schema:givenName Yeong Gil
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224015576.81
92 rdf:type schema:Person
93 sg:person.015100172437.15 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
94 schema:familyName Kye
95 schema:givenName Heewon
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015100172437.15
97 rdf:type schema:Person
98 sg:person.016461706727.53 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
99 schema:familyName Bae
100 schema:givenName Juhee
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016461706727.53
102 rdf:type schema:Person
103 https://doi.org/10.1109/4233.594025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061171185
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1111/1467-8659.00356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013176801
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1117/12.479857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032436035
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1145/197938.197966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030428733
110 rdf:type schema:CreativeWork
111 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
112 schema:name School of Computer Science and Engineering, BK21: Information Technology, Seoul National University
113 School of Computer Science and Engineering, Seoul National University, San 56-1 Shinlim 9-dong, Kwanak-gu, 151-742, Seoul, Korea
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...