Efficient Multimodality Volume Fusion Using Graphics Hardware View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2005

AUTHORS

Helen Hong , Juhee Bae , Heewon Kye , Yeong Gil Shin

ABSTRACT

We propose a novel technique of multimodality volume fusion using graphics hardware that solves the depth cueing problem with less time consumption. Our method consists of three steps. First, it takes two volumes and generates sample planes orthogonal to the viewing direction following 3D texture mapping volume rendering. Second, it composites textured slices each from different modalities with several compositing operations. Third, alpha blending for all the slices is performed. For the efficient volume fusion, a pixel program is written in HLSL(High Level Shader Language). Experimental results show that our hardware-accelerated method distinguishes the depth of overlapping region of the volume and renders them much faster than conventional ones on software. More... »

PAGES

842-845

Book

TITLE

Computational Science – ICCS 2005

ISBN

978-3-540-26044-8
978-3-540-32118-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11428862_120

DOI

http://dx.doi.org/10.1007/11428862_120

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038726854


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Computer Science and Engineering, BK21: Information Technology, Seoul National University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hong", 
        "givenName": "Helen", 
        "id": "sg:person.01066641322.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066641322.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Computer Science and Engineering, Seoul National University, San 56-1 Shinlim 9-dong, Kwanak-gu, 151-742, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bae", 
        "givenName": "Juhee", 
        "id": "sg:person.016461706727.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016461706727.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Computer Science and Engineering, Seoul National University, San 56-1 Shinlim 9-dong, Kwanak-gu, 151-742, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kye", 
        "givenName": "Heewon", 
        "id": "sg:person.015100172437.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015100172437.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Computer Science and Engineering, Seoul National University, San 56-1 Shinlim 9-dong, Kwanak-gu, 151-742, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shin", 
        "givenName": "Yeong Gil", 
        "id": "sg:person.01224015576.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224015576.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/1467-8659.00356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013176801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/197938.197966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030428733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.479857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032436035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4233.594025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061171185"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "We propose a novel technique of multimodality volume fusion using graphics hardware that solves the depth cueing problem with less time consumption. Our method consists of three steps. First, it takes two volumes and generates sample planes orthogonal to the viewing direction following 3D texture mapping volume rendering. Second, it composites textured slices each from different modalities with several compositing operations. Third, alpha blending for all the slices is performed. For the efficient volume fusion, a pixel program is written in HLSL(High Level Shader Language). Experimental results show that our hardware-accelerated method distinguishes the depth of overlapping region of the volume and renders them much faster than conventional ones on software.", 
    "editor": [
      {
        "familyName": "Sunderam", 
        "givenName": "Vaidy S.", 
        "type": "Person"
      }, 
      {
        "familyName": "van Albada", 
        "givenName": "Geert Dick", 
        "type": "Person"
      }, 
      {
        "familyName": "Sloot", 
        "givenName": "Peter M. A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Dongarra", 
        "givenName": "Jack", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11428862_120", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-26044-8", 
        "978-3-540-32118-7"
      ], 
      "name": "Computational Science \u2013 ICCS 2005", 
      "type": "Book"
    }, 
    "name": "Efficient Multimodality Volume Fusion Using Graphics Hardware", 
    "pagination": "842-845", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038726854"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11428862_120"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b87a5edd9782f2a9099d143ec0b1a16eb575da2b1a1abf3018cacdb26b96c136"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11428862_120", 
      "https://app.dimensions.ai/details/publication/pub.1038726854"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000357_0000000357/records_99328_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F11428862_120"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11428862_120'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11428862_120'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11428862_120'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11428862_120'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11428862_120 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N7a3bfd24f5cb4e90b9e22226e50e8a8c
4 schema:citation https://doi.org/10.1109/4233.594025
5 https://doi.org/10.1111/1467-8659.00356
6 https://doi.org/10.1117/12.479857
7 https://doi.org/10.1145/197938.197966
8 schema:datePublished 2005
9 schema:datePublishedReg 2005-01-01
10 schema:description We propose a novel technique of multimodality volume fusion using graphics hardware that solves the depth cueing problem with less time consumption. Our method consists of three steps. First, it takes two volumes and generates sample planes orthogonal to the viewing direction following 3D texture mapping volume rendering. Second, it composites textured slices each from different modalities with several compositing operations. Third, alpha blending for all the slices is performed. For the efficient volume fusion, a pixel program is written in HLSL(High Level Shader Language). Experimental results show that our hardware-accelerated method distinguishes the depth of overlapping region of the volume and renders them much faster than conventional ones on software.
11 schema:editor N3550894f3fed4152abcdaa869ff8a5e9
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf Ndca8accb373a4d7ca8315b136db2b087
16 schema:name Efficient Multimodality Volume Fusion Using Graphics Hardware
17 schema:pagination 842-845
18 schema:productId N1597daf442f34bcb92abe806e70c8e22
19 N9abcc740360e4835930697b1ad3be31d
20 Na72432c6409647d98cc6be2737a38ed6
21 schema:publisher N72cf4cfdd74d40e4a883a5e05e774cec
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038726854
23 https://doi.org/10.1007/11428862_120
24 schema:sdDatePublished 2019-04-16T07:38
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N6dfe896e9e294c0cacb19889f18d4ce2
27 schema:url https://link.springer.com/10.1007%2F11428862_120
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N136abfac82964b95a46ee25fc84750fe rdf:first sg:person.016461706727.53
32 rdf:rest N8ec4b41085f141be8dee1c6d5059915e
33 N1597daf442f34bcb92abe806e70c8e22 schema:name readcube_id
34 schema:value b87a5edd9782f2a9099d143ec0b1a16eb575da2b1a1abf3018cacdb26b96c136
35 rdf:type schema:PropertyValue
36 N24678e4a928744ecbbe41d3f5809b213 schema:familyName Sloot
37 schema:givenName Peter M. A.
38 rdf:type schema:Person
39 N3550894f3fed4152abcdaa869ff8a5e9 rdf:first Nec1cd749e1384a5b8be7e05186c4f548
40 rdf:rest N94fe120cc6e14c42a3fdcdaaf4bdcc25
41 N3bfedc1eea1040be89269948243590e8 schema:familyName van Albada
42 schema:givenName Geert Dick
43 rdf:type schema:Person
44 N6dfe896e9e294c0cacb19889f18d4ce2 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N72cf4cfdd74d40e4a883a5e05e774cec schema:location Berlin, Heidelberg
47 schema:name Springer Berlin Heidelberg
48 rdf:type schema:Organisation
49 N7a3bfd24f5cb4e90b9e22226e50e8a8c rdf:first sg:person.01066641322.21
50 rdf:rest N136abfac82964b95a46ee25fc84750fe
51 N826e6610db834306b9664bc20083c9cf schema:familyName Dongarra
52 schema:givenName Jack
53 rdf:type schema:Person
54 N8cf2b54b57cf4fc0a77a64d83759eea9 rdf:first N826e6610db834306b9664bc20083c9cf
55 rdf:rest rdf:nil
56 N8ec4b41085f141be8dee1c6d5059915e rdf:first sg:person.015100172437.15
57 rdf:rest Nbcafe8a35a90431798a048d2986f085c
58 N94fe120cc6e14c42a3fdcdaaf4bdcc25 rdf:first N3bfedc1eea1040be89269948243590e8
59 rdf:rest Na9f5ea0ac80b474f9ffa9bbe8bbc4bbe
60 N9abcc740360e4835930697b1ad3be31d schema:name doi
61 schema:value 10.1007/11428862_120
62 rdf:type schema:PropertyValue
63 Na72432c6409647d98cc6be2737a38ed6 schema:name dimensions_id
64 schema:value pub.1038726854
65 rdf:type schema:PropertyValue
66 Na9f5ea0ac80b474f9ffa9bbe8bbc4bbe rdf:first N24678e4a928744ecbbe41d3f5809b213
67 rdf:rest N8cf2b54b57cf4fc0a77a64d83759eea9
68 Nbcafe8a35a90431798a048d2986f085c rdf:first sg:person.01224015576.81
69 rdf:rest rdf:nil
70 Ndca8accb373a4d7ca8315b136db2b087 schema:isbn 978-3-540-26044-8
71 978-3-540-32118-7
72 schema:name Computational Science – ICCS 2005
73 rdf:type schema:Book
74 Nec1cd749e1384a5b8be7e05186c4f548 schema:familyName Sunderam
75 schema:givenName Vaidy S.
76 rdf:type schema:Person
77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
78 schema:name Information and Computing Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
81 schema:name Artificial Intelligence and Image Processing
82 rdf:type schema:DefinedTerm
83 sg:person.01066641322.21 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
84 schema:familyName Hong
85 schema:givenName Helen
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066641322.21
87 rdf:type schema:Person
88 sg:person.01224015576.81 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
89 schema:familyName Shin
90 schema:givenName Yeong Gil
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224015576.81
92 rdf:type schema:Person
93 sg:person.015100172437.15 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
94 schema:familyName Kye
95 schema:givenName Heewon
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015100172437.15
97 rdf:type schema:Person
98 sg:person.016461706727.53 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
99 schema:familyName Bae
100 schema:givenName Juhee
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016461706727.53
102 rdf:type schema:Person
103 https://doi.org/10.1109/4233.594025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061171185
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1111/1467-8659.00356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013176801
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1117/12.479857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032436035
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1145/197938.197966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030428733
110 rdf:type schema:CreativeWork
111 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
112 schema:name School of Computer Science and Engineering, BK21: Information Technology, Seoul National University
113 School of Computer Science and Engineering, Seoul National University, San 56-1 Shinlim 9-dong, Kwanak-gu, 151-742, Seoul, Korea
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...