Efficient Interactive Pre-integrated Volume Rendering View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2005

AUTHORS

Heewon Kye , Helen Hong , Yeong Gil Shin

ABSTRACT

Pre-integrated volume rendering has become one of the most efficient and important techniques in three dimensional medical visualization. It can produce high-quality images with less sampling. However, two important issues have received little attention throughout the ongoing discussion of pre-integration: Skipping over empty-space and the size of lookup table for a transfer function. In this paper, we present a novel approach for empty-space skipping using the overlapped-min-max block. Additionally, we propose a new approximation technique to reduce the dependent texture size so that it decreases the size of texture memory and the update time. We demonstrate performance gain and decreasing memory consumption for typical renditions of volumetric data sets. More... »

PAGES

834-837

Book

TITLE

Computational Science – ICCS 2005

ISBN

978-3-540-26044-8
978-3-540-32118-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11428862_118

DOI

http://dx.doi.org/10.1007/11428862_118

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036532020


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Computer Science and Engineering, Seoul National University", 
            "INFINITT Co., Ltd., Taesuk Bld., 275-5 Yangjae-dong Seocho-gu, 137-934, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kye", 
        "givenName": "Heewon", 
        "id": "sg:person.015100172437.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015100172437.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Computer Science and Engineering, BK21: Information Technology, Seoul National University, San 56-1 Shinlim-dong Kwanak-gu, 151-742, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hong", 
        "givenName": "Helen", 
        "id": "sg:person.01066641322.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066641322.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Computer Science and Engineering, Seoul National University", 
            "INFINITT Co., Ltd., Taesuk Bld., 275-5 Yangjae-dong Seocho-gu, 137-934, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shin", 
        "givenName": "Yeong Gil", 
        "id": "sg:person.01224015576.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224015576.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/383507.383515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026032768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/192161.192283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039224446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/38.511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061163896"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "Pre-integrated volume rendering has become one of the most efficient and important techniques in three dimensional medical visualization. It can produce high-quality images with less sampling. However, two important issues have received little attention throughout the ongoing discussion of pre-integration: Skipping over empty-space and the size of lookup table for a transfer function. In this paper, we present a novel approach for empty-space skipping using the overlapped-min-max block. Additionally, we propose a new approximation technique to reduce the dependent texture size so that it decreases the size of texture memory and the update time. We demonstrate performance gain and decreasing memory consumption for typical renditions of volumetric data sets.", 
    "editor": [
      {
        "familyName": "Sunderam", 
        "givenName": "Vaidy S.", 
        "type": "Person"
      }, 
      {
        "familyName": "van Albada", 
        "givenName": "Geert Dick", 
        "type": "Person"
      }, 
      {
        "familyName": "Sloot", 
        "givenName": "Peter M. A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Dongarra", 
        "givenName": "Jack", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11428862_118", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-26044-8", 
        "978-3-540-32118-7"
      ], 
      "name": "Computational Science \u2013 ICCS 2005", 
      "type": "Book"
    }, 
    "name": "Efficient Interactive Pre-integrated Volume Rendering", 
    "pagination": "834-837", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036532020"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11428862_118"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ae05de5aecadc48c38f4542374b5696cbb955954736e2627ab50a505fd3bde13"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11428862_118", 
      "https://app.dimensions.ai/details/publication/pub.1036532020"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000357_0000000357/records_99323_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F11428862_118"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11428862_118'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11428862_118'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11428862_118'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11428862_118'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      23 PREDICATES      30 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11428862_118 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N56486d9afb1e4a50968c8c6bcbf82ea4
4 schema:citation https://doi.org/10.1109/38.511
5 https://doi.org/10.1145/192161.192283
6 https://doi.org/10.1145/383507.383515
7 schema:datePublished 2005
8 schema:datePublishedReg 2005-01-01
9 schema:description Pre-integrated volume rendering has become one of the most efficient and important techniques in three dimensional medical visualization. It can produce high-quality images with less sampling. However, two important issues have received little attention throughout the ongoing discussion of pre-integration: Skipping over empty-space and the size of lookup table for a transfer function. In this paper, we present a novel approach for empty-space skipping using the overlapped-min-max block. Additionally, we propose a new approximation technique to reduce the dependent texture size so that it decreases the size of texture memory and the update time. We demonstrate performance gain and decreasing memory consumption for typical renditions of volumetric data sets.
10 schema:editor N9e72a5f461c849fe9a156b536d21d5b9
11 schema:genre chapter
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf N8469f8f2417f419f998988b81c069572
15 schema:name Efficient Interactive Pre-integrated Volume Rendering
16 schema:pagination 834-837
17 schema:productId N01f25a8524e04209bc136182e7cf6689
18 N37a8e828b6f44af4abf2190bfbdbd718
19 N7a7e5191f6c74dbfa8900dcdc1b3a51c
20 schema:publisher N48fb020e802b4b019e881c4042d3caf5
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036532020
22 https://doi.org/10.1007/11428862_118
23 schema:sdDatePublished 2019-04-16T07:38
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N891581326908412abcd3eebfe91d71dd
26 schema:url https://link.springer.com/10.1007%2F11428862_118
27 sgo:license sg:explorer/license/
28 sgo:sdDataset chapters
29 rdf:type schema:Chapter
30 N01f25a8524e04209bc136182e7cf6689 schema:name doi
31 schema:value 10.1007/11428862_118
32 rdf:type schema:PropertyValue
33 N1cf4ee748c3544ae8bb886880f8a9764 rdf:first N7ff37f8cc638423da8a27b2199cec04e
34 rdf:rest Nbbc2ffe693c94f65b882722d3eb9710c
35 N33a4da06352c4e4dad9fd610b57c1d1d schema:familyName Sunderam
36 schema:givenName Vaidy S.
37 rdf:type schema:Person
38 N37a8e828b6f44af4abf2190bfbdbd718 schema:name dimensions_id
39 schema:value pub.1036532020
40 rdf:type schema:PropertyValue
41 N48fb020e802b4b019e881c4042d3caf5 schema:location Berlin, Heidelberg
42 schema:name Springer Berlin Heidelberg
43 rdf:type schema:Organisation
44 N4e4e667b8dfc429f9a1a4e5645af0548 schema:familyName Dongarra
45 schema:givenName Jack
46 rdf:type schema:Person
47 N56486d9afb1e4a50968c8c6bcbf82ea4 rdf:first sg:person.015100172437.15
48 rdf:rest Ne125abe606d84c57a41c06c741ad2bee
49 N71e25ab794ec40999a9ab5cbcc7f4183 schema:familyName Sloot
50 schema:givenName Peter M. A.
51 rdf:type schema:Person
52 N7a7e5191f6c74dbfa8900dcdc1b3a51c schema:name readcube_id
53 schema:value ae05de5aecadc48c38f4542374b5696cbb955954736e2627ab50a505fd3bde13
54 rdf:type schema:PropertyValue
55 N7ff37f8cc638423da8a27b2199cec04e schema:familyName van Albada
56 schema:givenName Geert Dick
57 rdf:type schema:Person
58 N8469f8f2417f419f998988b81c069572 schema:isbn 978-3-540-26044-8
59 978-3-540-32118-7
60 schema:name Computational Science – ICCS 2005
61 rdf:type schema:Book
62 N891581326908412abcd3eebfe91d71dd schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N9e72a5f461c849fe9a156b536d21d5b9 rdf:first N33a4da06352c4e4dad9fd610b57c1d1d
65 rdf:rest N1cf4ee748c3544ae8bb886880f8a9764
66 Na4892b5988694890af18b925be0c4b03 rdf:first sg:person.01224015576.81
67 rdf:rest rdf:nil
68 Naa4e7216def248d9b4d9a4d4d405f539 rdf:first N4e4e667b8dfc429f9a1a4e5645af0548
69 rdf:rest rdf:nil
70 Nbbc2ffe693c94f65b882722d3eb9710c rdf:first N71e25ab794ec40999a9ab5cbcc7f4183
71 rdf:rest Naa4e7216def248d9b4d9a4d4d405f539
72 Ne125abe606d84c57a41c06c741ad2bee rdf:first sg:person.01066641322.21
73 rdf:rest Na4892b5988694890af18b925be0c4b03
74 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
75 schema:name Information and Computing Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
78 schema:name Artificial Intelligence and Image Processing
79 rdf:type schema:DefinedTerm
80 sg:person.01066641322.21 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
81 schema:familyName Hong
82 schema:givenName Helen
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066641322.21
84 rdf:type schema:Person
85 sg:person.01224015576.81 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
86 schema:familyName Shin
87 schema:givenName Yeong Gil
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224015576.81
89 rdf:type schema:Person
90 sg:person.015100172437.15 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
91 schema:familyName Kye
92 schema:givenName Heewon
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015100172437.15
94 rdf:type schema:Person
95 https://doi.org/10.1109/38.511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061163896
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1145/192161.192283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039224446
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1145/383507.383515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026032768
100 rdf:type schema:CreativeWork
101 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
102 schema:name INFINITT Co., Ltd., Taesuk Bld., 275-5 Yangjae-dong Seocho-gu, 137-934, Seoul, Korea
103 School of Computer Science and Engineering, BK21: Information Technology, Seoul National University, San 56-1 Shinlim-dong Kwanak-gu, 151-742, Seoul, Korea
104 School of Computer Science and Engineering, Seoul National University
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...