Intrusion Detection System Using Sequence and Set Preserving Metric View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005

AUTHORS

Pradeep Kumar , M. Venkateswara Rao , P. Radha Krishna , Raju S. Bapi , Arijit Laha

ABSTRACT

Intrusion detection systems rely on a wide variety of observable data to distinguish between legitimate and illegitimate activities. In this paper we investigate the use of sequences of system calls for classifying intrusions and faults induced by privileged processes in Unix Operating system. In our work we applied sequence-data mining approach in the context of intrusion detection system (IDS). This paper introduces a new similarity measure that considers both sequence as well as set similarity among sessions. Considering both order of occurrences as well as content in a session enhances the capabilities of kNN classifier significantly, especially in the context of intrusion detection. From our experiments on DARPA 1998 IDS dataset we infer that the order of occurrences plays a major role in determining the nature of the session. The objective of this work is to construct concise and accurate classifiers to detect anomalies based on sequence as well as set similarity. More... »

PAGES

498-504

Book

TITLE

Intelligence and Security Informatics

ISBN

978-3-540-25999-2
978-3-540-32063-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11427995_49

DOI

http://dx.doi.org/10.1007/11427995_49

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019969106


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Hyderabad", 
          "id": "https://www.grid.ac/institutes/grid.18048.35", 
          "name": [
            "Institute for Development and Research in Banking Technology, IDRBT, Castle Hills, Masab Tank, 500057, Hyderabad, India", 
            "University of Hyderabad, Gochibowli, 500046, Hyderabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "Pradeep", 
        "id": "sg:person.013160314425.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013160314425.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hyderabad", 
          "id": "https://www.grid.ac/institutes/grid.18048.35", 
          "name": [
            "Institute for Development and Research in Banking Technology, IDRBT, Castle Hills, Masab Tank, 500057, Hyderabad, India", 
            "University of Hyderabad, Gochibowli, 500046, Hyderabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rao", 
        "givenName": "M. Venkateswara", 
        "id": "sg:person.07403702213.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07403702213.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Development and Research in Banking Technology", 
          "id": "https://www.grid.ac/institutes/grid.473631.4", 
          "name": [
            "Institute for Development and Research in Banking Technology, IDRBT, Castle Hills, Masab Tank, 500057, Hyderabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krishna", 
        "givenName": "P. Radha", 
        "id": "sg:person.010423171637.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010423171637.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hyderabad", 
          "id": "https://www.grid.ac/institutes/grid.18048.35", 
          "name": [
            "University of Hyderabad, Gochibowli, 500046, Hyderabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bapi", 
        "givenName": "Raju S.", 
        "id": "sg:person.01367446263.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367446263.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Development and Research in Banking Technology", 
          "id": "https://www.grid.ac/institutes/grid.473631.4", 
          "name": [
            "Institute for Development and Research in Banking Technology, IDRBT, Castle Hills, Masab Tank, 500057, Hyderabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laha", 
        "givenName": "Arijit", 
        "id": "sg:person.011633466625.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011633466625.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3233/jcs-980109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020966377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21236/ada401496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091748226"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "Intrusion detection systems rely on a wide variety of observable data to distinguish between legitimate and illegitimate activities. In this paper we investigate the use of sequences of system calls for classifying intrusions and faults induced by privileged processes in Unix Operating system. In our work we applied sequence-data mining approach in the context of intrusion detection system (IDS). This paper introduces a new similarity measure that considers both sequence as well as set similarity among sessions. Considering both order of occurrences as well as content in a session enhances the capabilities of kNN classifier significantly, especially in the context of intrusion detection. From our experiments on DARPA 1998 IDS dataset we infer that the order of occurrences plays a major role in determining the nature of the session. The objective of this work is to construct concise and accurate classifiers to detect anomalies based on sequence as well as set similarity.", 
    "editor": [
      {
        "familyName": "Kantor", 
        "givenName": "Paul", 
        "type": "Person"
      }, 
      {
        "familyName": "Muresan", 
        "givenName": "Gheorghe", 
        "type": "Person"
      }, 
      {
        "familyName": "Roberts", 
        "givenName": "Fred", 
        "type": "Person"
      }, 
      {
        "familyName": "Zeng", 
        "givenName": "Daniel D.", 
        "type": "Person"
      }, 
      {
        "familyName": "Wang", 
        "givenName": "Fei-Yue", 
        "type": "Person"
      }, 
      {
        "familyName": "Chen", 
        "givenName": "Hsinchun", 
        "type": "Person"
      }, 
      {
        "familyName": "Merkle", 
        "givenName": "Ralph C.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11427995_49", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-25999-2", 
        "978-3-540-32063-0"
      ], 
      "name": "Intelligence and Security Informatics", 
      "type": "Book"
    }, 
    "name": "Intrusion Detection System Using Sequence and Set Preserving Metric", 
    "pagination": "498-504", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019969106"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11427995_49"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5f2560cb18630812285ff5366f0b79edb705b536070f695675e2a07ed245edfe"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11427995_49", 
      "https://app.dimensions.ai/details/publication/pub.1019969106"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29204_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F11427995_49"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11427995_49'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11427995_49'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11427995_49'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11427995_49'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      23 PREDICATES      29 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11427995_49 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nfe20f53ba3524911925bfa8679b05ed9
4 schema:citation https://doi.org/10.21236/ada401496
5 https://doi.org/10.3233/jcs-980109
6 schema:datePublished 2005
7 schema:datePublishedReg 2005-01-01
8 schema:description Intrusion detection systems rely on a wide variety of observable data to distinguish between legitimate and illegitimate activities. In this paper we investigate the use of sequences of system calls for classifying intrusions and faults induced by privileged processes in Unix Operating system. In our work we applied sequence-data mining approach in the context of intrusion detection system (IDS). This paper introduces a new similarity measure that considers both sequence as well as set similarity among sessions. Considering both order of occurrences as well as content in a session enhances the capabilities of kNN classifier significantly, especially in the context of intrusion detection. From our experiments on DARPA 1998 IDS dataset we infer that the order of occurrences plays a major role in determining the nature of the session. The objective of this work is to construct concise and accurate classifiers to detect anomalies based on sequence as well as set similarity.
9 schema:editor Nd07596e6b9ae47f6aa4b03e41d8514d9
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N5aceec7403a14561a92c9dea9ae36521
14 schema:name Intrusion Detection System Using Sequence and Set Preserving Metric
15 schema:pagination 498-504
16 schema:productId N78acced4b4844380b228a87bf664b7ac
17 N859d342215fc443b951be97d58265f2e
18 Na4f435db000c4865b2acb8dd967be20e
19 schema:publisher Nf9308f170b104484a179b2ebee596422
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019969106
21 https://doi.org/10.1007/11427995_49
22 schema:sdDatePublished 2019-04-16T08:03
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N66412311f23b4871ab394f065f8c347e
25 schema:url https://link.springer.com/10.1007%2F11427995_49
26 sgo:license sg:explorer/license/
27 sgo:sdDataset chapters
28 rdf:type schema:Chapter
29 N09d63c6deeb843cfa2a3f198d4d464fc schema:familyName Zeng
30 schema:givenName Daniel D.
31 rdf:type schema:Person
32 N1910dccbcfb6471ba1aa3fd24159fb4f rdf:first N9063978732c945b5b7860a6c5bd2d1d1
33 rdf:rest N1d1146da51524e7d9496a351ae67d353
34 N19ccc6fb434f4b069427c2275d803d72 schema:familyName Chen
35 schema:givenName Hsinchun
36 rdf:type schema:Person
37 N1d1146da51524e7d9496a351ae67d353 rdf:first Na1e90900b1e043bfb4b8ca1bb0504664
38 rdf:rest N24e9e529fa77468a8a839a098b6077d0
39 N23ae72b55a42449fafa9c7a8918a069b rdf:first sg:person.011633466625.33
40 rdf:rest rdf:nil
41 N24e9e529fa77468a8a839a098b6077d0 rdf:first N09d63c6deeb843cfa2a3f198d4d464fc
42 rdf:rest Ne5f0c2e747374742ac0efc3767342472
43 N3f88c599acb445838eb52c6e8666270f rdf:first N9216de1eb0eb4290be0acb87b3ed72f8
44 rdf:rest rdf:nil
45 N44efb2f41c894af5b747afb17eb7ec22 rdf:first sg:person.010423171637.27
46 rdf:rest Nd549fbec7d864675b348f64b418ad8d4
47 N5aceec7403a14561a92c9dea9ae36521 schema:isbn 978-3-540-25999-2
48 978-3-540-32063-0
49 schema:name Intelligence and Security Informatics
50 rdf:type schema:Book
51 N629d8c73fbda41a3b41e900447dd4fc2 rdf:first sg:person.07403702213.94
52 rdf:rest N44efb2f41c894af5b747afb17eb7ec22
53 N66412311f23b4871ab394f065f8c347e schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N78acced4b4844380b228a87bf664b7ac schema:name doi
56 schema:value 10.1007/11427995_49
57 rdf:type schema:PropertyValue
58 N810521793c6c4798a9b9a28214bc247f schema:familyName Kantor
59 schema:givenName Paul
60 rdf:type schema:Person
61 N859d342215fc443b951be97d58265f2e schema:name dimensions_id
62 schema:value pub.1019969106
63 rdf:type schema:PropertyValue
64 N9063978732c945b5b7860a6c5bd2d1d1 schema:familyName Muresan
65 schema:givenName Gheorghe
66 rdf:type schema:Person
67 N9216de1eb0eb4290be0acb87b3ed72f8 schema:familyName Merkle
68 schema:givenName Ralph C.
69 rdf:type schema:Person
70 N95f6337d6b4341c8b62299eac611ec68 rdf:first N19ccc6fb434f4b069427c2275d803d72
71 rdf:rest N3f88c599acb445838eb52c6e8666270f
72 Na1e90900b1e043bfb4b8ca1bb0504664 schema:familyName Roberts
73 schema:givenName Fred
74 rdf:type schema:Person
75 Na4f435db000c4865b2acb8dd967be20e schema:name readcube_id
76 schema:value 5f2560cb18630812285ff5366f0b79edb705b536070f695675e2a07ed245edfe
77 rdf:type schema:PropertyValue
78 Nd07596e6b9ae47f6aa4b03e41d8514d9 rdf:first N810521793c6c4798a9b9a28214bc247f
79 rdf:rest N1910dccbcfb6471ba1aa3fd24159fb4f
80 Nd549fbec7d864675b348f64b418ad8d4 rdf:first sg:person.01367446263.09
81 rdf:rest N23ae72b55a42449fafa9c7a8918a069b
82 Ne1a27db8feb04d9295c4ecaa310c86c8 schema:familyName Wang
83 schema:givenName Fei-Yue
84 rdf:type schema:Person
85 Ne5f0c2e747374742ac0efc3767342472 rdf:first Ne1a27db8feb04d9295c4ecaa310c86c8
86 rdf:rest N95f6337d6b4341c8b62299eac611ec68
87 Nf9308f170b104484a179b2ebee596422 schema:location Berlin, Heidelberg
88 schema:name Springer Berlin Heidelberg
89 rdf:type schema:Organisation
90 Nfe20f53ba3524911925bfa8679b05ed9 rdf:first sg:person.013160314425.80
91 rdf:rest N629d8c73fbda41a3b41e900447dd4fc2
92 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
93 schema:name Information and Computing Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
96 schema:name Artificial Intelligence and Image Processing
97 rdf:type schema:DefinedTerm
98 sg:person.010423171637.27 schema:affiliation https://www.grid.ac/institutes/grid.473631.4
99 schema:familyName Krishna
100 schema:givenName P. Radha
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010423171637.27
102 rdf:type schema:Person
103 sg:person.011633466625.33 schema:affiliation https://www.grid.ac/institutes/grid.473631.4
104 schema:familyName Laha
105 schema:givenName Arijit
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011633466625.33
107 rdf:type schema:Person
108 sg:person.013160314425.80 schema:affiliation https://www.grid.ac/institutes/grid.18048.35
109 schema:familyName Kumar
110 schema:givenName Pradeep
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013160314425.80
112 rdf:type schema:Person
113 sg:person.01367446263.09 schema:affiliation https://www.grid.ac/institutes/grid.18048.35
114 schema:familyName Bapi
115 schema:givenName Raju S.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367446263.09
117 rdf:type schema:Person
118 sg:person.07403702213.94 schema:affiliation https://www.grid.ac/institutes/grid.18048.35
119 schema:familyName Rao
120 schema:givenName M. Venkateswara
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07403702213.94
122 rdf:type schema:Person
123 https://doi.org/10.21236/ada401496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091748226
124 rdf:type schema:CreativeWork
125 https://doi.org/10.3233/jcs-980109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020966377
126 rdf:type schema:CreativeWork
127 https://www.grid.ac/institutes/grid.18048.35 schema:alternateName University of Hyderabad
128 schema:name Institute for Development and Research in Banking Technology, IDRBT, Castle Hills, Masab Tank, 500057, Hyderabad, India
129 University of Hyderabad, Gochibowli, 500046, Hyderabad, India
130 rdf:type schema:Organization
131 https://www.grid.ac/institutes/grid.473631.4 schema:alternateName Institute for Development and Research in Banking Technology
132 schema:name Institute for Development and Research in Banking Technology, IDRBT, Castle Hills, Masab Tank, 500057, Hyderabad, India
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...