Ontology type: schema:Chapter Open Access: True
2005
AUTHORSClaude Crépeau , Daniel Gottesman , Adam Smith
ABSTRACTIt is a standard result in the theory of quantum error- correcting codes that no code of length n can fix more than n/4 arbitrary errors, regardless of the dimension of the coding and encoded Hilbert spaces. However, this bound only applies to codes which recover the message exactly. Naively, one might expect that correcting errors to very high fidelity would only allow small violations of this bound. This intuition is incorrect: in this paper we describe quantum error-correcting codes capable of correcting up to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lfloor(n - 1)/2\rfloor$\end{document} arbitrary errors with fidelity exponentially close to 1, at the price of increasing the size of the registers (i.e., the coding alphabet). This demonstrates a sharp distinction between exact and approximate quantum error correction. The codes have the property that any t components reveal no information about the message, and so they can also be viewed as error-tolerant secret sharing schemes.The construction has several interesting implications for cryptography and quantum information theory. First, it suggests that secret sharing is a better classical analogue to quantum error correction than is classical error correction. Second, it highlights an error in a purported proof that verifiable quantum secret sharing (VQSS) is impossible when the number of cheaters t is n/4. In particular, the construction directly yields an honest-dealer VQSS scheme for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t= \lfloor(n - 1)/2\rfloor$\end{document}. We believe the codes could also potentially lead to improved protocols for dishonest-dealer VQSS and secure multi-party quantum computation.More generally, the construction illustrates a difference between exact and approximate requirements in quantum cryptography and (yet again) the delicacy of security proofs and impossibility results in the quantum model. More... »
PAGES285-301
Advances in Cryptology – EUROCRYPT 2005
ISBN
978-3-540-25910-7
978-3-540-32055-5
http://scigraph.springernature.com/pub.10.1007/11426639_17
DOIhttp://dx.doi.org/10.1007/11426639_17
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1040777272
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Data Format",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "McGill University, Montr\u00e9al, QC, Canada",
"id": "http://www.grid.ac/institutes/grid.14709.3b",
"name": [
"McGill University, Montr\u00e9al, QC, Canada"
],
"type": "Organization"
},
"familyName": "Cr\u00e9peau",
"givenName": "Claude",
"id": "sg:person.01127736412.71",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127736412.71"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Perimeter Institute, Waterloo, ON, Canada",
"id": "http://www.grid.ac/institutes/grid.420198.6",
"name": [
"Perimeter Institute, Waterloo, ON, Canada"
],
"type": "Organization"
},
"familyName": "Gottesman",
"givenName": "Daniel",
"id": "sg:person.013605661215.68",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013605661215.68"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Weizmann Institute of Science, Rehovot, Israel",
"id": "http://www.grid.ac/institutes/grid.13992.30",
"name": [
"Weizmann Institute of Science, Rehovot, Israel"
],
"type": "Organization"
},
"familyName": "Smith",
"givenName": "Adam",
"id": "sg:person.013307226666.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013307226666.21"
],
"type": "Person"
}
],
"datePublished": "2005",
"datePublishedReg": "2005-01-01",
"description": "It is a standard result in the theory of quantum error- correcting codes that no code of length n can fix more than n/4 arbitrary errors, regardless of the dimension of the coding and encoded Hilbert spaces. However, this bound only applies to codes which recover the message exactly. Naively, one might expect that correcting errors to very high fidelity would only allow small violations of this bound. This intuition is incorrect: in this paper we describe quantum error-correcting codes capable of correcting up to \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\lfloor(n - 1)/2\\rfloor$\\end{document} arbitrary errors with fidelity exponentially close to 1, at the price of increasing the size of the registers (i.e., the coding alphabet). This demonstrates a sharp distinction between exact and approximate quantum error correction. The codes have the property that any t components reveal no information about the message, and so they can also be viewed as error-tolerant secret sharing schemes.The construction has several interesting implications for cryptography and quantum information theory. First, it suggests that secret sharing is a better classical analogue to quantum error correction than is classical error correction. Second, it highlights an error in a purported proof that verifiable quantum secret sharing (VQSS) is impossible when the number of cheaters t is n/4. In particular, the construction directly yields an honest-dealer VQSS scheme for \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$t= \\lfloor(n - 1)/2\\rfloor$\\end{document}. We believe the codes could also potentially lead to improved protocols for dishonest-dealer VQSS and secure multi-party quantum computation.More generally, the construction illustrates a difference between exact and approximate requirements in quantum cryptography and (yet again) the delicacy of security proofs and impossibility results in the quantum model.",
"editor": [
{
"familyName": "Cramer",
"givenName": "Ronald",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/11426639_17",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-540-25910-7",
"978-3-540-32055-5"
],
"name": "Advances in Cryptology \u2013 EUROCRYPT 2005",
"type": "Book"
},
"keywords": [
"verifiable quantum secret sharing",
"secret sharing scheme",
"error-correcting codes",
"secret sharing",
"quantum error-correcting codes",
"sharing scheme",
"error correction",
"arbitrary errors",
"error correcting codes",
"security proof",
"classical error correction",
"quantum error correcting codes",
"quantum secret sharing",
"cryptography",
"quantum cryptography",
"information theory",
"impossibility results",
"purported proof",
"approximate quantum error correction",
"code",
"sharing",
"quantum error correction",
"approximate quantum error correcting codes",
"quantum information theory",
"quantum computation",
"scheme",
"messages",
"improved protocol",
"classical analog",
"quantum model",
"high fidelity",
"error",
"coding",
"small violations",
"length n",
"computation",
"proof",
"requirements",
"information",
"fidelity",
"approximate requirements",
"construction",
"protocol",
"intuition",
"interesting implications",
"Hilbert space",
"standard results",
"correction",
"space",
"T component",
"violation",
"model",
"results",
"theory",
"number",
"components",
"properties",
"dimensions",
"sharp distinction",
"prices",
"Register",
"size",
"distinction",
"analogues",
"delicacy",
"implications",
"paper",
"differences"
],
"name": "Approximate Quantum Error-Correcting Codes and Secret Sharing Schemes",
"pagination": "285-301",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1040777272"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/11426639_17"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/11426639_17",
"https://app.dimensions.ai/details/publication/pub.1040777272"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:33",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_367.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/11426639_17"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11426639_17'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11426639_17'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11426639_17'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11426639_17'
This table displays all metadata directly associated to this object as RDF triples.
148 TRIPLES
23 PREDICATES
94 URIs
87 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/11426639_17 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0804 |
3 | ″ | schema:author | Na3ec88bbe8e745cf9e48ba2ad4f6a6a9 |
4 | ″ | schema:datePublished | 2005 |
5 | ″ | schema:datePublishedReg | 2005-01-01 |
6 | ″ | schema:description | It is a standard result in the theory of quantum error- correcting codes that no code of length n can fix more than n/4 arbitrary errors, regardless of the dimension of the coding and encoded Hilbert spaces. However, this bound only applies to codes which recover the message exactly. Naively, one might expect that correcting errors to very high fidelity would only allow small violations of this bound. This intuition is incorrect: in this paper we describe quantum error-correcting codes capable of correcting up to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lfloor(n - 1)/2\rfloor$\end{document} arbitrary errors with fidelity exponentially close to 1, at the price of increasing the size of the registers (i.e., the coding alphabet). This demonstrates a sharp distinction between exact and approximate quantum error correction. The codes have the property that any t components reveal no information about the message, and so they can also be viewed as error-tolerant secret sharing schemes.The construction has several interesting implications for cryptography and quantum information theory. First, it suggests that secret sharing is a better classical analogue to quantum error correction than is classical error correction. Second, it highlights an error in a purported proof that verifiable quantum secret sharing (VQSS) is impossible when the number of cheaters t is n/4. In particular, the construction directly yields an honest-dealer VQSS scheme for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t= \lfloor(n - 1)/2\rfloor$\end{document}. We believe the codes could also potentially lead to improved protocols for dishonest-dealer VQSS and secure multi-party quantum computation.More generally, the construction illustrates a difference between exact and approximate requirements in quantum cryptography and (yet again) the delicacy of security proofs and impossibility results in the quantum model. |
7 | ″ | schema:editor | Ncf33109ffa894e80ba7767342d3b94b0 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | Nea4157a2819e48d0972dd7f45a49918e |
12 | ″ | schema:keywords | Hilbert space |
13 | ″ | ″ | Register |
14 | ″ | ″ | T component |
15 | ″ | ″ | analogues |
16 | ″ | ″ | approximate quantum error correcting codes |
17 | ″ | ″ | approximate quantum error correction |
18 | ″ | ″ | approximate requirements |
19 | ″ | ″ | arbitrary errors |
20 | ″ | ″ | classical analog |
21 | ″ | ″ | classical error correction |
22 | ″ | ″ | code |
23 | ″ | ″ | coding |
24 | ″ | ″ | components |
25 | ″ | ″ | computation |
26 | ″ | ″ | construction |
27 | ″ | ″ | correction |
28 | ″ | ″ | cryptography |
29 | ″ | ″ | delicacy |
30 | ″ | ″ | differences |
31 | ″ | ″ | dimensions |
32 | ″ | ″ | distinction |
33 | ″ | ″ | error |
34 | ″ | ″ | error correcting codes |
35 | ″ | ″ | error correction |
36 | ″ | ″ | error-correcting codes |
37 | ″ | ″ | fidelity |
38 | ″ | ″ | high fidelity |
39 | ″ | ″ | implications |
40 | ″ | ″ | impossibility results |
41 | ″ | ″ | improved protocol |
42 | ″ | ″ | information |
43 | ″ | ″ | information theory |
44 | ″ | ″ | interesting implications |
45 | ″ | ″ | intuition |
46 | ″ | ″ | length n |
47 | ″ | ″ | messages |
48 | ″ | ″ | model |
49 | ″ | ″ | number |
50 | ″ | ″ | paper |
51 | ″ | ″ | prices |
52 | ″ | ″ | proof |
53 | ″ | ″ | properties |
54 | ″ | ″ | protocol |
55 | ″ | ″ | purported proof |
56 | ″ | ″ | quantum computation |
57 | ″ | ″ | quantum cryptography |
58 | ″ | ″ | quantum error correcting codes |
59 | ″ | ″ | quantum error correction |
60 | ″ | ″ | quantum error-correcting codes |
61 | ″ | ″ | quantum information theory |
62 | ″ | ″ | quantum model |
63 | ″ | ″ | quantum secret sharing |
64 | ″ | ″ | requirements |
65 | ″ | ″ | results |
66 | ″ | ″ | scheme |
67 | ″ | ″ | secret sharing |
68 | ″ | ″ | secret sharing scheme |
69 | ″ | ″ | security proof |
70 | ″ | ″ | sharing |
71 | ″ | ″ | sharing scheme |
72 | ″ | ″ | sharp distinction |
73 | ″ | ″ | size |
74 | ″ | ″ | small violations |
75 | ″ | ″ | space |
76 | ″ | ″ | standard results |
77 | ″ | ″ | theory |
78 | ″ | ″ | verifiable quantum secret sharing |
79 | ″ | ″ | violation |
80 | ″ | schema:name | Approximate Quantum Error-Correcting Codes and Secret Sharing Schemes |
81 | ″ | schema:pagination | 285-301 |
82 | ″ | schema:productId | N202b7d58151c4cd2b6cbe5fd0dbee2f7 |
83 | ″ | ″ | Na2aa1dafdc394afdb21142e89d199d68 |
84 | ″ | schema:publisher | Na22ceb1b6c29429f95b444b3616c418a |
85 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040777272 |
86 | ″ | ″ | https://doi.org/10.1007/11426639_17 |
87 | ″ | schema:sdDatePublished | 2022-06-01T22:33 |
88 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
89 | ″ | schema:sdPublisher | N972219798f7f4abc9f81c6144c3e5bd5 |
90 | ″ | schema:url | https://doi.org/10.1007/11426639_17 |
91 | ″ | sgo:license | sg:explorer/license/ |
92 | ″ | sgo:sdDataset | chapters |
93 | ″ | rdf:type | schema:Chapter |
94 | N202b7d58151c4cd2b6cbe5fd0dbee2f7 | schema:name | doi |
95 | ″ | schema:value | 10.1007/11426639_17 |
96 | ″ | rdf:type | schema:PropertyValue |
97 | N972219798f7f4abc9f81c6144c3e5bd5 | schema:name | Springer Nature - SN SciGraph project |
98 | ″ | rdf:type | schema:Organization |
99 | Na22ceb1b6c29429f95b444b3616c418a | schema:name | Springer Nature |
100 | ″ | rdf:type | schema:Organisation |
101 | Na2aa1dafdc394afdb21142e89d199d68 | schema:name | dimensions_id |
102 | ″ | schema:value | pub.1040777272 |
103 | ″ | rdf:type | schema:PropertyValue |
104 | Na3ec88bbe8e745cf9e48ba2ad4f6a6a9 | rdf:first | sg:person.01127736412.71 |
105 | ″ | rdf:rest | Ndae5ba09586c4b9f88ce2ba854974749 |
106 | Nb73093843ee54812b122f81d4d2d2593 | schema:familyName | Cramer |
107 | ″ | schema:givenName | Ronald |
108 | ″ | rdf:type | schema:Person |
109 | Ncf33109ffa894e80ba7767342d3b94b0 | rdf:first | Nb73093843ee54812b122f81d4d2d2593 |
110 | ″ | rdf:rest | rdf:nil |
111 | Ndae5ba09586c4b9f88ce2ba854974749 | rdf:first | sg:person.013605661215.68 |
112 | ″ | rdf:rest | Nef861a6e12f94e88bd1b5462fd27f7a5 |
113 | Nea4157a2819e48d0972dd7f45a49918e | schema:isbn | 978-3-540-25910-7 |
114 | ″ | ″ | 978-3-540-32055-5 |
115 | ″ | schema:name | Advances in Cryptology – EUROCRYPT 2005 |
116 | ″ | rdf:type | schema:Book |
117 | Nef861a6e12f94e88bd1b5462fd27f7a5 | rdf:first | sg:person.013307226666.21 |
118 | ″ | rdf:rest | rdf:nil |
119 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
120 | ″ | schema:name | Information and Computing Sciences |
121 | ″ | rdf:type | schema:DefinedTerm |
122 | anzsrc-for:0804 | schema:inDefinedTermSet | anzsrc-for: |
123 | ″ | schema:name | Data Format |
124 | ″ | rdf:type | schema:DefinedTerm |
125 | sg:person.01127736412.71 | schema:affiliation | grid-institutes:grid.14709.3b |
126 | ″ | schema:familyName | Crépeau |
127 | ″ | schema:givenName | Claude |
128 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127736412.71 |
129 | ″ | rdf:type | schema:Person |
130 | sg:person.013307226666.21 | schema:affiliation | grid-institutes:grid.13992.30 |
131 | ″ | schema:familyName | Smith |
132 | ″ | schema:givenName | Adam |
133 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013307226666.21 |
134 | ″ | rdf:type | schema:Person |
135 | sg:person.013605661215.68 | schema:affiliation | grid-institutes:grid.420198.6 |
136 | ″ | schema:familyName | Gottesman |
137 | ″ | schema:givenName | Daniel |
138 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013605661215.68 |
139 | ″ | rdf:type | schema:Person |
140 | grid-institutes:grid.13992.30 | schema:alternateName | Weizmann Institute of Science, Rehovot, Israel |
141 | ″ | schema:name | Weizmann Institute of Science, Rehovot, Israel |
142 | ″ | rdf:type | schema:Organization |
143 | grid-institutes:grid.14709.3b | schema:alternateName | McGill University, Montréal, QC, Canada |
144 | ″ | schema:name | McGill University, Montréal, QC, Canada |
145 | ″ | rdf:type | schema:Organization |
146 | grid-institutes:grid.420198.6 | schema:alternateName | Perimeter Institute, Waterloo, ON, Canada |
147 | ″ | schema:name | Perimeter Institute, Waterloo, ON, Canada |
148 | ″ | rdf:type | schema:Organization |